
uDeploy™ User Guide
—

uDeploy 4.5.0
—

Document Version 4.5.0.2

 | Introduction | 2

 | TOC | 3

Contents

List of Figures.. 7

List of Tables.. 11

Part I: Introduction...13
Overview... 14

Components...15
Applications...18
Agents..19
Resources...19

Part II: Hands-On... 21
Getting Started...22

Creating Components..22
hello_world Component Version.. 23
Hello World Component Process.. 26
hello_world Component Process Design.. 27
Hello World Application... 32

Part III: Using uDeploy.. 43
Components...44

Creating Components..44
Component Processes..46
Process Editor..48
Component Templates...55

Resources...57
Resource Groups... 59

Applications...61
Creating Applications..62

Deployments..64
Reports...67

Deployment Reports..68
Security Reports.. 77
Saving and Printing Reports..79

Schedule Deployments.. 80

Part IV: Administration... 81
Installation...82

System Requirements..82
Download UrbanDeploy..84
Database Installation... 84
Server Installation..86
Agent Installation.. 88
Running uDeploy.. 89

Security..90
Authentication... 91

 | TOC | 4

Authorization...94

Part V: Reference..97
Plug-in Integration...98

Ant Plug-in.. 99
Groovy Plug-in..99
IIS_AppCmd Plug-in...99
JBOSS Plug-in...100
SQL/JDBC Plug-in..100
SQLPLUS Plug-in...100
Tomcat Plug-in..101
WebSphere Plug-in..101
WLDeploy Plug-in.. 102
Standard Component Process Steps.. 103

Notifications.. 103
Configuration...105

Application Configuration...106
Component Configuration...108
Environment Configuration...109

Inventory... 110
CLI Reference... 113

addActionToRoleForApplications.. 113
addActionToRoleForComponents...113
addActionToRoleForEnvironments.. 113
addActionToRoleForResources.. 114
addActionToRoleForUI...114
addComponentToApplication... 114
addGroupToRoleForApplication...115
addGroupToRoleForComponent...115
addGroupToRoleForEnvironment...116
addGroupToRoleForResource...116
addGroupToRoleForUI... 117
addLicense...117
addNameConditionToGroup...117
addPropertyConditionToGroup...118
addResourceToGroup..118
addRoleToResource.. 119
addRoleToResourceWithProperties.. 119
addUserToGroup... 119
addUserToRoleForApplication... 120
addUserToRoleForComponent... 120
addUserToRoleForEnvironment... 121
addUserToRoleForResource... 121
addUserToRoleForUI..121
addVersionFiles...122
addVersionStatus...122
createApplication...123
createApplicationProcess.. 123
createComponent...124
createComponentProcess...124
createDynamicResourceGroup..125
createEnvironment...125
createGroup... 126
createMapping... 126
createResourceGroup.. 126

 | TOC | 5

createRoleForApplications..127
createRoleForComponents.. 127
createRoleForEnvironments..127
createRoleForResources..128
createRoleForUI.. 128
createSubresource..128
createUser..129
createVersion...129
deleteGroup... 130
deleteResourceGroup.. 130
deleteResourceProperty...130
deleteUser..131
exportGroup...131
getApplication... 131
getApplicationProcess...132
getApplicationProcessRequestStatus.. 132
getApplications..132
getComponent... 133
getComponentProcess... 133
getComponents..133
getComponentsInApplication..134
getEnvironment... 134
getEnvironmentsInApplication... 134
getMapping..135
getResource... 135
getResourceGroup... 135
getResourceGroups... 135
getResourceProperty... 136
getResources..136
getResourcesInGroup.. 136
getRoleForApplications...137
getRoleForComponents...137
getRoleForEnvironments...137
getRoleForResources...138
getRoleForUI...138
getUser...138
importGroup.. 139
importVersions.. 139
login...140
logout...140
removeActionFromRoleForApplications..140
removeActionFromRoleForComponents.. 141
removeActionFromRoleForEnvironments..141
removeActionFromRoleForResources..141
removeActionFromRoleForUI.. 142
removeGroupFromRoleForApplication.. 142
removeGroupFromRoleForComponent.. 143
removeGroupFromRoleForEnvironment.. 143
removeGroupFromRoleForResource.. 143
removeGroupFromRoleForUI...144
removeResourceFromGroup... 144
removeRoleForApplications... 145
removeRoleForComponents..145
removeRoleForEnvironments... 145
removeRoleForResources... 146
removeRoleForUI..146

 | TOC | 6

removeRoleFromResource..146
removeUserFromGroup...147
removeUserFromRoleForApplication...147
removeUserFromRoleForComponent...147
removeUserFromRoleForEnvironment...148
removeUserFromRoleForResource...148
removeUserFromRoleForUI... 149
repeatApplicationProcessRequest... 149
requestApplicationProcess.. 150
setComponentEnvironmentProperty... 150
setComponentProperty.. 151
setResourceProperty..151
updateUser...151

 | TOC | 7

List of Figures

Figure 1: uDeploy Deployment Process.. 14

Figure 2: Component Process with Switch Step..16

Figure 3: Version Pane.. 25

Figure 4: Component Artifacts.. 26

Figure 5: Process Design Pane.. 29

Figure 6: Adding a Step to an Anchor Point..30

Figure 7: Edit tool..32

Figure 8: Adding a component to an application...34

Figure 9: Adding a resource to an environment.. 35

Figure 10: Environments Tab.. 36

Figure 11: Create an Application Process dialog.. 36

Figure 12: Process Design Pane.. 37

Figure 13: Edit Properties Dialog.. 38

Figure 14: Run for Versions Without Inventory Status field.. 38

Figure 15: Nested parameters.. 39

Figure 16: Process Design Pane.. 49

Figure 17: Typical Process Step.. 50

Figure 18: Adding a Step...51

Figure 19: Typical Edit Properties Pop-up.. 51

Figure 20: Connection Tool...52

Figure 21: Dragging the Connection Over a Target Step.. 52

Figure 22: Completed Connection...53

Figure 23: Edit Properties Dialog.. 53

Figure 24: Process with Switch Step... 54

Figure 25: Component Template template nameView..57

 | TOC | 8

Figure 26: Resources Pane...58

Figure 27: Resource Groups Pane... 58

Figure 28: Sub-Groups.. 59

Figure 29: Action Tool.. 60

Figure 30: Create a Resource Group Dialog..60

Figure 31: Add a Resource Dialog.. 60

Figure 32: Sub-resources... 61

Figure 33: Deploy Application.. 65

Figure 34: Deployment Count Graph.. 72

Figure 35: Security Pane..90

Figure 36: Security Pane..91

Figure 37: Create Authorization Realm...91

Figure 38: Authorization Realm Dialog.. 92

Figure 39: Edit Users... 93

Figure 40: Group Dialog..94

Figure 41: Role Pane... 95

Figure 42: Notification Schemes... 103

Figure 43: Notification Type... 104

Figure 44: Notification Target... 104

Figure 45: Notification Role..104

Figure 46: Template...105

Figure 47: Configuration Tab.. 106

Figure 48: Application Properties panel.. 107

Figure 49: Edit Property pop-up.. 108

Figure 50: Configuration Tab.. 109

Figure 51: Environment Configuration Tab.. 110

Figure 52: Resource inventory...111

Figure 53: Component inventory...112

 | TOC | 9

Figure 54: Environment Inventory.. 112

 | TOC | 10

 | TOC | 11

List of Tables

Table 1: Deployment Reports..67

Table 2: Security Reports.. 68

 | TOC | 12

Part

I
Introduction

Topics:

• Overview

 | Introduction | 14

Overview
At its base, software deployment is a simple concept that sometimes gets obscured by jargon. Deployment is the
process of moving software (broadly defined) through various preproduction stages to final production. Typically,
each stage represents a step of higher criticality, such as quality assurance to production. Complexity arises from the
sheer volume of things deployed, the number and variety of deployment targets, constantly-decreasing deployment
cycles, and the ever-increasing rate of technological change. Virtualization, while providing some relief, also
increases the challenge by its exponential growth of deployment targets.

uDeploy helps you meet the challenge by providing resources that improve deployment speeds while simultaneously
improving their reliability. uDeploy's release automation tools provide complete visibility into n-tiered deployments,
enabling you to model processes that orchestrate complex deployments across every environment and approval gate.
uDeploy's drag-and-drop design tools decrease design-time by making it easy to visualize the end-to-end deployment
process and develop the big picture--the What, How, and Where of the deployment workflow:

• What: the deployable items--binaries, static content, middleware updates, database changes and configurations,
and anything else associated with the software--that uDeploy delivers to target destinations.

• How: refers to combining deployable items with processes to create components, and designing applications that
coordinate and orchestrate multi-component deployments.

• Where: the target destination's hosts and environments--uDeploy can scale to any environment.

Figure 1: uDeploy Deployment Process

In uDeploy, deployable items are combined into logical groupings called components. Components are deployed by
component processes which consist of user-configured steps, many taken from integrations with third-party tools
called plug-ins. Multi-component deployments are handled by user-assembled applications.

 | Introduction | 15

uDeploy represents deployment targets by what it calls resources. Resources--databases, servers, and so on--reside
on hosts. Complex deployments can contain numerous components. Components can also remain independent of one
another, which enables incremental or targeted deployments. Of course, you can model your components as you see
fit--uDeploy is flexible and works the way you work.

uDeploy helps you rapidly adapt to ever-changing market conditions by providing:

• continuous deployment using automated triggers
• scheduled deployments
• self-service deployments with per-environment access control
• automatic deployment roll-back
• integration with authentication systems such as LDAP
• artifact repository
• tight SCM integration
• build tool integration

uDeploy Server

The uDeploy server is a standalone server that provides uDeploy's core services such as the user interface, component
and application configuration tools, workflow engine, and security services, among others.

uDeploy supports cross-network deployments with relay servers. Relay servers enable network-to-network
communications.

uDeploy Agents

An agent is a lightweight process that runs on a host and communicates with the uDeploy server. Agents manage
the resources that are the actual deployment targets. Each machine participating in a deployment usually has an
agent installed on it. When not performing deployments, agents run in the background with minimal overhead. See
Resources on page 19.

Repository

Deployable items are stored in a repository, such as CodeStation or Maven. The uDeploy artifact repository,
CodeStation, provides secure and tamper-proof storage. It tracks artifact versions as they change and maintains an
archive for each artifact. Associations between repository files and components are built-in and automatic.

See Architecture and Technology.

Security

In uDeploy’s role-based security, users are assigned roles, and role-permissions are assigned to things such as
projects, build configurations, and other resources. For example, a developer may be permitted to build a project, but
only view non-project related material. See Security on page 90.

Components

Understanding how uDeploy uses the term component is critical to understanding uDeploy. Components represent
deployable items along with user-defined processes that operate on them, usually by deploying them. Deployable
items--also called artifacts--can be files, images, databases, configuration materials, or anything else associated with a
software project. Components have versions which are used to ensure that proper component instances get deployed.

Artifacts can come from a number of sources: file systems, build servers such as AnthillPro, source version control
systems, Maven repositories, as well as many others. When you create a component, you identify the source and
define how the artifacts will be brought into uDeploy. If the source is Subversion, for example, you specify the
Subversion repository containing the artifacts. Each component represents artifacts from a single source.

 | Introduction | 16

Component Processes

A component process is a series of user-defined steps that operate on a component's artifacts. Each component has
at least one process defined for it and can have several. A component process can be as simple as a single step or
contain numerous steps and relationships. The switch step, for instance, enables you to create conditional processes.
You might, say, take artifacts from a source like an AnthillPro project and map the ones that get deployed to an HTTP
server into one component; those that get deployed to a J2EE container to another; and those that get deployed to a
database to yet another. Or, to take another example, a single-component deployment might consist of two processes:
the first moves component files to a server on Friday night (a lengthy operation), while the second deploys the files
Saturday morning.

Figure 2: Component Process with Switch Step

 | Introduction | 17

Component processes are created with uDeploy's process editor. The process editor is visual drag-and-drop editor that
enables you to drag process steps onto the workspace and configure them as you go. As additional steps are placed,
you visually define their relationships with one another. Process steps are selected from a menu of standardized steps
that replace typical deployment scripts and manual processes. uDeploy provides steps for several utility processes,
such as inventory management, and workflow control. Additional process steps are provided by plug-ins. Plug-ins
provide integration with common deployment tools and application servers, such as WebSphere, Microsoft IIS, and
many others. Out-of-the-box, uDeploy provides plug-ins for many common processes, such as downloading and
uploading artifacts, and retrieving environment information. A component process can have steps from more than one
plug-in.

A component process is defined for a specific component. A component can have more than one process defined for
it, but each component requires at least one process.

For example, deploying a J2EE EAR file to WebSphere server typically consists of the following operations:

1. transfer the EAR file to the target machine
2. stop the WebSphere server instance
3. invoke wsAdmin with deployment properties
4. start the WebSphere instance
5. verify that the deployment succeeded by accessing a specified URL

The WebSphere plug-in provides a configurable process step for each operation.

A frequently used component process can be saved as a template and applied later to new components.

Component processes are executed by uDeploy agents running on hosts. One instance of a component process is
invoked for each resource mapped to a component in the target environment, see Resources on page 19.

Plug-ins

Plug-ins provide integration with third-party tools. uDeploy ships with plug-ins for several common deployment
processes, and others are readily available for a wide variety of tools, such as middleware tools, databases, servers,
and other deployment targets.

Third-party tools exhibit wide and varied functions, of course. Plug-in integration is achieved by breaking down
a tool's functions into simple, discrete steps that invoke a specific behavior. A plug-in step might invoke a tool, or
invoke different functions in a tool, such as extracting or inserting some type of data.

When you use plug-ins to create a component process, you can use steps from several plug-ins and configure the steps
as you go. For example, you might create a process using a plug-in for a source control tool that deploys a component
to a middleware server, and another plug-in to configure a step that removes the component from the server.

A component process that contains a plug-in step requires an agent. Unless the agent needs to interact with the host's
file system or system processes, the agent does not have to be on the same host as the target resource.

uDeploy enables you to download and install numerous component plug-ins. UrbanCode does not charge any
additional fees for plug-ins. The plug-in system is open and extensible--plug-ins can be written in any language.

Component Versions and the CodeStation Repository

After defining a component's source and processes, you import its artifacts into uDeploy's artifact repository
CodeStation. Artifacts can be imported automatically or manually. By default, a complete copy of an artifact's content
is imported into CodeStation (the original artifacts are untouched). This provides several benefits, such as tamper-
proof storage, and the ability to review and validate artifacts with uDeploy's user interface. But if you have storage
concerns or use a tool like Maven, you can limit CodeStation to using references to the artifacts instead of actually
copying them.

Each time a component is imported, including the first time, it is versioned. Versions can be assigned automatically
by uDeploy, applied manually, or come from a build server. Every time a component's artifacts are modified and
reimported, a new version of the component is created. So a component might have several versions in CodeStation
and each version will be unique.

 | Introduction | 18

A version can be full or incremental. A full version contains all component artifacts; an incremental version only
contains artifacts modified since the previous version was created.

Applications

Applications are the mechanism that initiate component deployments; they bring together components with their
deployment targets, and orchestrate multi-component deployments.

Application Process

When you create an application, you identify the included components and define an application process. Application
processes, like component processes, are created with the process editor. uDeploy provides several common process
steps, otherwise application processes are assembled from processes defined for their associated components.

Application processes can run manually, automatically on some trigger condition, or on a user-defined schedule.
When a component has several processes defined for it, the application determines which ones are executed and
in which order. For instance, an n-tiered application might have a web tier, a middleware tier, and a database tier.
And, continuing the example, the database tier must be updated before the other two, which are then deployed
concurrently. An application can orchestrate the entire process, including putting servers on- and off-line for load-
balancing as required.

An application process is always associated with a target environment. When an application process executes,
it interacts with a specific environment. An environment is a collection of one or more resources. At least one
environment must be associated with the application before the process can be executed. Application processes are
environment agnostic; processes can be designed independently of any particular environment. This enables a single
application to interact with separate environments, such as QA, or production. To use the same application process
with multiple environments (a typical scenario), you associate each environment with the application and execute the
process separately for each one.

In addition to deployments, several other common processes are available, such as rolling-back deployments.
uDeploy tracks the history of each component version, which enables application processes to restore environments to
any desired point.

Environments

An environment is a user-defined collection of resources that host an application. Environments are typically modeled
on some stage of the software project life cycle, such as development, QA, or production. A resource is a deployment
target, such as a database or J2EE container. Resources are usually found on the same host where the agent that
manages them is located. A host can be a physical machine, virtual machine, or be cloud-based. See Architecture and
Technology.

Environments can have different topologies--for example: an environment can consist of on a single machine; be
spread over several machines; or spread over clusters of machines. Environments are application scoped. Although
multi-tenant machines can be the target of multiple applications, experience has shown that most IT organizations use
application-specific environments. Additionally, approvals are generally scoped to environments.

uDeploy maintains an inventory of every artifact deployed to each environment and tracks the differences between
them.

Snapshots

You can also create application snapshots. A snapshot is a collection of specific component versions, usually versions
that are known to work together. Typically, a snapshot is generated in an uncontrolled environment--meaning
one without approvals. When a snapshot is created, a picture of the application's current state is captured. As an
application moves through different environments, snapshots can validate that proper component versions are used.

Snapshots help manage complex deployments--deployments with multiple tiers and development teams. For example,
after testing and confirming that team A's component works with teams B's, a snapshot could be taken. Then, as
development progressed, additional snapshots could be taken and used to model the effort and drive the entire
deployment, coordinating versions, configurations, and processes.

 | Introduction | 19

Agents

Agents are integral to uDeploy's client/server architecture. An agent is a process that runs on target host and
communicates with the uDeploy server. Agents perform the actual work of deploying components and so relieves the
server from the task, making large deployments involving thousands of targets possible.

Typically, an agent run on the same host where the resources it handles are located. A single agent can handle all
resources on its host. If a host has several resources, an agent process is invoked separately for each resource. For
example, a test environment might contain a single web server, a single middleware server, and a single database
server all running on the same host (machine). A deployment to this environment might have one agent and three
separate resources.

Depending on the number of hosts in an environment, a deployment might require a large number of agents. Agents
are unobtrusive and secure. Agent communications use SSL encryption and mutual key-based authentication. For
added security, agents do not listen to ports, but open direct connections to the server instead.

Resources

Resources are logical constructs based on uDeploy's architectural model. Resources aid bookkeeping; inventory is
tracked for resources. Resources are created and managed through the user interface.

A resource represents a deployment target--a physical machine, virtual machine, database, J2EE container, and so on.
Components are deployed to resources by agents (which are physical processes). Resources generally reside on the
same host where its managing agent runs. A host can have more than one resource. If an agent is configured to handle
multiple resources, a separate agent process is invoked for each one.

A resource can represent a physical machine, which is the simplest configuration, or a specific target on a machine,
such as a database or server. So a host (machine) can have several resources represented on it. In addition, a resource
can represent a process distributed over several physical or virtual machines. Environments consist of resources.

To perform a deployment, at least one resource must be defined and (usually) at least one agent. ("Usually" because
trivial deployments can be done without an agent.) Typically, each host in a participating environment has an agent
running on it to handle the resources located there.

A proxy resource is a resource effected by an agent on a host other than the one where the resource is located. If
an agent does not require direct interaction with the file system or with process management on the host, a proxy
resource can be used. When a deployment needs to interact with a service exposed on the network (a database or
J2EE server, for instance), the interaction can happen from any machine that has access to the networked service.

Resource Groups

A resource group is a logical collection of resources. Resource groups enable collections of resources to be easily
reused. Resource groups can manage multi-tenant scenarios, for example, in which several machines share the same
resources.

 | Introduction | 20

Part

II
Hands-On

Topics:

• Getting Started

 | Hands-On | 22

Getting Started
Welcome to uDeploy! This section gets you started by providing immediate hands-on experience using uDeploy.
The hello_world walk-through shows you how to create a simple deployment using out-of-the-box features. The
second walk-through, hello_worldWS, shows you how to install a freely-available plug-in (for the WebSphere
server in this instance) and create a basic deployment using it.

Note: This section assumes you have installed the uDeploy server and at least one agent. For the walk-
through, the agent can be installed on the same machine where the server is installed. If the agent or server
have not been installed, see Installation on page 82 for information about installation.

Quick Overview

Generally, the following steps are performed when creating a deployment:

1. Configure Resources

Resources are agents and agent groupings. Typically, at least one agent is installed in every environment used by
the deployment. As mentioned, Quick Start assumes that at least one agent has already been installed and so we
will not cover agent creation here. See Resources on page 57 for more information about agents.

2. Define Components

Components represent the source items that will be installed and managed by the deployment. When you create a
component, you tell uDeploy where the items are found--a file system or source code repository, for example--and
what processes should be performed on them. The source items and processes together define the component. See
Components on page 44 for more information about creating components.

3. Define Application

An application brings together all the components used by the deployment. When you create an application,
you identify the components and define the processes required to move the components through all required
environments. See Applications on page 61 for more information about creating applications.

Creating Components

Components are the artifacts--files, images, databases, etc.--that UrbanDeploy manages and deploys. When creating a
component, one good approach is:

1. Create a version.

After you identify where the component's artifacts are stored on your system, you assign a version identifier to
it. UrbanDeploy can use existing version schemes, such as the numbers assigned by your build server or artifact
management server.

2. Define processes.

The process is where you tell UrbanDeploy what to do with the component. A process is designed by assembling
basic units of automation, called steps. Steps replace most deployment scripts and/or manual processes. Processes
are designed using a drag-and-drop tool.

hello_world Deployment

The hello_world deployment moves some files on the local file system to another location on the file system,
presumably a location used by an application server. hello_world is a very simple deployment but it has several
advantages: it uses many of UrbanDeploy's key features--features you will use every day, and it does not require the
installation of additional plug-ins.

UrbanDeploy plug-ins provide integration with many common deployment tools and application servers. Each
integration has at least one step, which can be thought of as a distinct piece of automation. By stringing individual
steps together, you create a fully automated process that can replace many of your existing scripts and manual
processes. Plug-ins are available for Subversion, Maven, Tomcat, WebSphere (which we demonstrate later), and
many others.

 | Hands-On | 23

A Note Before You Begin

You can read the walk-through without actually performing the steps, or you can perform them as you read along. If
you want to actually perform the steps as we go, do the following before starting:

1. Create a directory somewhere on your system named helloWorld.
2. Within helloWorld create a sub-directory named 1.0.
3. Within 1.0 place several--say 5--files. For speed, text-type files should be used.
4. Create another directory somewhere on your file system.
5. Within the directory just created, create a sub-directory. This sub-directory will be the target for our deployment. I

created C:\UAT\appUAT on my system.

hello_world Component Version

To configure the Hello World Component Version:

1. On the Navigation bar, click the Components tab.

2. On the Components pane, click Create New Component.

Components are defined with the Create New Component dialog box. The first four and last two fields displayed
are the same for every source type; the remaining fields depend on the value selected in the Source Config Type
field.

3. Enter hello_world in the Name field.

 | Hands-On | 24

The name is used when assembling the application. If the component will be used by more than one application,
the name should be generic rather than project-specific. For components that are project-specific, a name that
conveys something meaningful about the project should be used.

4. Enter a description in the Description field.

The optional description can be used to convey additional information about the component. If the component
is used by more than one application, for example, entering "Used in applications A and B" can help identify
how the component is used. If you are unsure about what to enter, leave the field blank. You can always return to
the component and edit the description at any time. In an attempt to appear hip, I entered Euro store for my
component.

5. Accept the default value in the Status Plug-in field--Default.

Experienced users can use this field to customize plug-ins designed to monitor the component's status. See [TBD].
6. Select File System from the Source Config Type field.

Selecting a value changes several fields to those required by the selected value. The type-dependent fields are used
to identify where the artifacts comprising the component are stored. See [TBD] for a description of the supported
types.

File System is used when the artifacts are on a file share or the local file system. This is the simplest
configuration option and can be used to quickly set up a component for evaluation purposes, as we do here.

7. Complete this option by entering the path to the artifacts.

In our example, the artifacts are stored in C:\helloWorld. Inside the base-directory, artifacts are stored in
numbered directories; the numbers represent distinct versions. C:\helloWorld has only one version and
so only one sub-directory--1.0. When automatically polling the base directory, or manually requesting a new
version, uDeploy will compare the current version in the base-directory with the one stored in CodeStation
(uDeploy's artifact repository). If changes are found, a new version, using the name/number found, will be created.

8. Check the Import Versions Automatically check box.

uDeploy will automatically poll the source location for new versions when this option is selected. If new material
is found, a new version will be created, based on the new version number. You can manually create versions by
using the Versions tab. If this option is not selected, you will have to manually create a new version every time
one becomes available.

9. Ensure the Copy to CodeStation check box is selected.

This option, which is recommended by UrbanCode and selected by default, creates a tamper-proof copy of the
specified component and stores it in the embedded artifact management system--CodeStation. If this option is
not selected, only meta data about the component version will be imported. The only advantage to bypassing
CodeStation is the avoidance of storing the files in two places. In most situations this advantage is far outweighed
by the reduced visibility into the artifacts.

 | Hands-On | 25

10. Click the Save button to save the component.
11. To verify that the correct files are imported into UrbanCode, click the Versions tab.

The Versions pane displays all versions for the selected component. If all went well, the material in the specified
base-path was imported automatically.

Figure 3: Version Pane

The base-path, as you will recall, is C:\helloWord. Within helloWorld is the single sub-directory, 1.0, as
shown in the following illustration.

The 1.0 directory contains the artifacts that comprise the version. To see the artifacts, click on the version name
in the Version pane.

 | Hands-On | 26

Figure 4: Component Artifacts

Hello World Component Process

Once a component has been created and a version imported, a process to deploy the artifacts--called a component
process--must be defined.

To Configure the hello_world Component Process:

1. On the Navigation bar, click the Components tab.
2. On the Components pane, click the on the name of the component--hello_world on my machine.
3. On the Component: Name_of_selected_component pane, click the Processes tab.
4. Click the Create New Process button.

5. In the Create New Process dialog, enter a name in the Name field.

 | Hands-On | 27

The name and description typically reflect the component's content and process type.
6. Enter a meaningful description in the Description field.

If the process will be used by several applications, you can specify that here.
7. Accept the default value in the Default Working Directory field.

This is the location where the process steps will be executed. The default value enables the process to work in
different environments, and for our exercise (and for most processes), the default value is fine. If you change the
default value, the process might not work in every environment visited by the component.

8. Check the Requires a Version check box.

When checked, the version will be passed to the process at run-time.
9. Accept the default value (None) in the Required Component Role field.

This option enables you to restrict who can run this process. The available options are derived from the uDeploy
Security System. For information about security roles, see Security on page 90.

10. Select Add Inventory in the Inventory Action Type field.

This field is displayed if the Requires a Version check box is selected. For information about inventory,
see Inventory on page 110.

11. Accept the default value of Active in the Inventory Status field.

This field is displayed if the Add Inventory or Remove Inventory values are selected in the Inventory
Action Type field. The Staged status is used when performing a rolling deployment.

12. Use the Save button to save your work.

hello_world Component Process Design

To complete the process, you must define its individual steps. A component process must have at least one step. The
steps are defined with the Process Design pane, see Figure 5: Process Design Pane on page 29. You define the
steps by dragging-and-dropping them onto the design area and arranging them in the order they are to be executed.

To Define the hello_world Process Steps

1. On the Component: hello_world pane, click the Processes tab.
2. Click the name of the process you created in the previous section--hello_worldInstall in my case.

 | Hands-On | 28

The Process Design pane is where the individual steps are defined.

 | Hands-On | 29

Figure 5: Process Design Pane

The steps are listed in the Available Plug-in Steps list-box. Take a moment to expand the listings and review the
available steps. Out-of-the-box, uDeploy comes the listed plug-in steps. In the next walk-through (hello_worldWS)
you will learn how to add additional plug-ins.

3. In the Available Plug-in Steps box, expand the Artifacts item.
4. Drag the Download Artifacts by Label item into the design area and release it on the anchor point as

shown in the following illustration.

 | Hands-On | 30

Figure 6: Adding a Step to an Anchor Point

Note: Most deployments should start with this step.

Releasing the mouse-pointer on the anchor point displays the Edit Properties dialog. The fields on this dialog are
always tailored for the selected step.

 | Hands-On | 31

These fields, along with the fields for the other steps, are described in Plug-in Integration on page 98. For this
exercise, we can achieve our goal by changing one field--Working Directory.

Recall that the goal for this deployment is to move the source files in the base-directory to another location.
As you might guess, uDeploy provides several methods for accomplishing this goal; changing the Working
Directory field here is one of the simplest.

5. Enter the path to the target directory you created at the beginning of the exercise, as we discussed in Creating
Components on page 22.

If the field is left blank, the process will use the working directory defined earlier. Entering the path overrides the
previous value and causes UrbanCode to place the source files in the specified location.

6. Use the Save button to save the step and close the dialog.

We can accept the default values for the other fields. If you need to edit the step properties, click the Edit tool on
the step graphic.

 | Hands-On | 32

Figure 7: Edit tool
7. Save the component by using the Save tool on the Tools menu.

Typically, we would define additional steps by dragging them onto the design area and defining them as we did
here, but for this simple deployment the single step--Download Artifacts by Label--accomplishes the
goal.

Once the process steps are defined, the final task is to define an application that uses the component.

Hello World Application

Deployments are performed by applications. Applications bring together the component versions, environments, and
application processes required to perform the deployment.

An environment is a collection of resources that host the application. Environments typically include host machines
and uDeploy agents.

Application processes play a coordinating role in a deployment. Application processes are authored in a manner
similar to component processes (see Hello World Component Process on page 26).

After creating an application, you perform the deployment by running the application.

Creating an Application

1. On the Navigation bar, click the Applications tab.
2. On the Applications pane, click Create New Application.

Components are defined with the Create New Application dialog.

 | Hands-On | 33

3. Enter a name in the Name field.
4. Enter a description in the Description field.
5. Select the default value of None from the Notification Scheme drop-down list box.

uDeploy integrates with LDAP and e-mail servers which enables it to send event-based notifications. For
example, the default notification scheme will send an e-mail when a deployment finishes. Notifications can also
play a role in deployment approvals. See Security on page 90 for information about security roles.

6. Use the Save button when you are finished.

The Application: name pane is displayed. If you need to change your work, use the Edit tab.

Adding a Component to the Application

After the application is saved, the components it requires must be identified. We will add the hello_world component
we created earlier.

1. On the Application: name pane, click the Components tab.
2. Click the Add Component button.

An application must have at least one component.
3. If you created the hello_world component described earlier (see hello_world Component Version on page 23),

select hello_world from the Select a Component list box.

 | Hands-On | 34

Figure 8: Adding a component to an application
4. Click the Save button.

The Application: name pane is redisplayed.

Adding an Environment to the Application

1. On the Environments tab, click the Create New Environment button.

Before an application can run, it must have at least one environment created for it. An environment defines the
resources (agents and machines) used by the application.

2. Use the Create New Environment dialog to define the environment.

 | Hands-On | 35

The value in the Name field will be used in the deployment.

If you check the Require Approvals check box, uDeploy will enforce an approvals process. This is our first
deployment so an uncontrolled environment will do fine--leave the box unchecked.

Selecting a color provides a visual identifier for the environment. Typically, every environment will be assigned
its own color.

After saving your work, the Environment: name pane is displayed.
3. Click the Component Mappings tab.

The hello_world component we added earlier to the application is listed in the Component Mappings list
box.

4. Click the Add a Resource button. The Add a Resource dialog is displayed.
5. In the Add a Resource list box, select the agent that was created when uDeploy was installed on your system.

While our example uses but a single resource, deployments can use many resources and resource groups.
Resource groups provide a way to combine resources, which can be useful when multiple deployments use
overlapping resources. See Resources on page 57 for information about resource groups.

Figure 9: Adding a resource to an environment

Adding a Process to the Application

Now that our application has an environment, we are ready to create an application-level process that we can use to
perform the deployment.

1. Click the breadcrumb trail to redisplay the Application: name pane.

 | Hands-On | 36

Figure 10: Environments Tab

Note: You might be wondering why you need to create an application-level process when the process you
created for the component should be able to perform the deployment by itself. For a single-component
deployment like hello_world, an application-level process might not be required. You might also want
to skip an application-level process when you are testing or patching a component. But for non-trivial
deployments, especially deployments that have more than one component, you will want to create one or
more application-level processes. Application-level processes enable you to combine components into a
single deployment.

2. Click the Processes tab.
3. Click the Create New Process button. The Create an Application Process dialog is displayed.

Figure 11: Create an Application Process dialog
4. Enter a name in the Name field.
5. In the Required Application Role drop-down list box, accept the None default value.

This option enables you to restrict who can run this process. The available options are derived from the uDeploy
Security System. For information about security roles, see Security on page 90.

6. In the Inventory Management drop-down list box, accept the default value of Automatic.

 | Hands-On | 37

Automatic inventory management is sufficient for most applications. If you need to manually control inventory,
select the Advanced option. See Inventory on page 110 for information about inventory management.

7. Use the Save button when you are finished.

Designing the Process Steps

To create an application-level process, you define the individual steps as you did earlier (Hello World Component
Process on page 26) when you used the Process Design pane to create the hello_world component process.

1. On the Application: hello_word pane, click the Processes tab.
2. Click the name of the application you defined earlier to display the Process Design pane.

Figure 12: Process Design Pane

The out-of-box process steps are listed in the Add a Component Process list box.
3. Drag the Install Component step onto the design area and release the mouse pointer on the anchor point.

The step graphic is inserted into the design area and the Edit Properties dialog is displayed, as shown in the
following illustration.

 | Hands-On | 38

Figure 13: Edit Properties Dialog

uDeploy will walk you through the three steps required to configure Install Component: first, select the
component; second, select the version; finally, name the process. At each point, the Edit Properties dialog is
updated with the required fields.

4. Select a component from the Component drop-down list box.

If you followed the Quick Start Guide, the hello_world component will be listed.
5. Accept the default values for the other fields (see Applications on page 61 for information about the other

fields), and click Save.

The Edit Properties dialog is refreshed--the Run for Versions Without Inventory Status drop-down list box is
displayed.

Figure 14: Run for Versions Without Inventory Status field

 | Hands-On | 39

6. Accept the default value Active (see Applications on page 61 for information about the other fields), and
click Save.

Active means uDeploy will deploy any version not previously deployed and part of the inventory system. The
Staged value is used when performing a rolling deployment. See Applications on page 61 for information
about rolling deployments.

The dialog box is refreshed, as shown in the following illustration.

7. Enter a process name in the Name field.
8. Leave the Allow Failure check box unchecked. If checked, processes that perform several actions will continue

processing even if one component fails. See Applications on page 61 for information about this option.
9. Select a component process from the Component Process list box, then use the Save button to save the process

step.

Components can have several processes defined for them.

The three steps are nested in the step graphic, as you can see from the following illustration. The first step is the
outermost one. If you need to edit a step, click on the corresponding edit tool.

Figure 15: Nested parameters
10. Finally, save the process by clicking the Save tool on the Tools bar.

Running the Application

Now that the component, environment, and application are complete, you are ready to perform the deployment by
running the application.

1. On the Application pane, click the Request Process button for the environment you created earlier.

 | Hands-On | 40

The Run Process dialog is displayed.
2. Leave the Only Changed Versions check box checked. For this deployment, we only want to run the application

on changed (new) versions.

3. Select the process you created from the Process drop-down list box. Applications can have more than one process
defined for them.

Because we did not create a snapshot of the application, the Snapshot field is inactive. See Applications on page
61 for information about snapshots.

4. Select Latest Version from the Version drop-down list box. This option ensures that the latest (or first and
only) version is affected by the application.

Leave the Schedule Deployment? check box unselected. Selecting this option displays fields you can use to
schedule the deployment.

5. Click the Submit button to run the application.

The Application Process pane is displayed.

 | Hands-On | 41

Take a few moments to examine the information on this pane. Hopefully, you will see several Success
messages in the Status field. To see additional information about the process, click the Details link in the
Actions field.

 | Hands-On | 42

Part

III
Using uDeploy

Topics:

• Components
• Resources
• Applications
• Deployments
• Reports
• Schedule Deployments

 | Using uDeploy | 44

Components
Components represent deployable items along with user-defined processes that operate on them, usually by deploying
them. Deployable items, or artifacts, can be files, images, databases, configuration materials, or anything else
associated with a software project. Artifacts can come from a number of sources: file systems, build servers such
as AnthillPro, as well as many others. When you create a component, you identify the source and define how the
artifacts will be brought into uDeploy.

Component Processes

A component process is a series of user-defined steps that operate on a component's artifacts. Each component has
at least one process defined for it and can have several. A component process can be as simple as a single step or
contain numerous relationships, branches, and process switches. Component processes are created with uDeploy's
process editor. The process editor is a visual drag-and-drop editor that enables you to drag process steps onto the
workspace and configure them as you go. As additional steps are placed, you visually define their relationships with
one another. Process steps are selected from a menu of standardized steps. uDeploy provides steps for several utility
processes, such as inventory management, and workflow control. Additional process steps are provided by plug-ins.
A component process can have steps from more than one plug-in. See Plug-in Integration on page 98.

Additionally, you can create processes and configure properties and save them as templates to create new
components. See Component Templates on page 55

Component Versions and the CodeStation Repository

After defining a component's source and processes, you import its artifacts into uDeploy's artifact repository
CodeStation. Artifacts can be imported automatically or manually. By default, a complete copy of an artifact's content
is imported into CodeStation (the original artifacts are untouched). Each time a component is imported, including the
first time, it is versioned. Versions can be assigned automatically by uDeploy, applied manually, or come from a build
server. Every time a component's artifacts are modified and reimported, a new version of the component is created.

Creating Components

In general, component creation is the same for all components. When creating a component, you:

1. Define and configure the component.

You name the component and identify the artifacts' source, such as AnthillPro, a file system, or Subversion. A
component can contain any number of artifacts but they must all share the same source.

2. Assemble process(es).

A process defines what uDeploy does with the component's artifacts. A process might consist of any number of
steps, such as starting and starting servers, and moving files. In addition to deploying, other processes can import
artifacts and perform various utility tasks.

Configuring Components

To create a component:

1. On the Navigation bar, click the Components tab.

 | Using uDeploy | 45

2. On the Components pane, click Create New Component.

Components are defined with the Create New Component dialog box. Several fields displayed are the same for
every source, while others depend on the source type selected with the Source Config Type field.

3. Enter the component's name in the Name field.

The name is used when assembling an application. If the component will be used by more than one application,
the name should be generic rather than project-specific. For components that are project specific, a name that
conveys something meaningful about the project should be used.

4. Enter a description in the Description field.

The optional description can be used to convey additional information about the component.
5. Optionally, select a template from the Template drop-down list.

"Template" refers to component templates. Any previously created templates are listed. A component can have a
single template associated with it. The default value is None. See Component Templates on page 55.

If you select a template, the Template Version field is displayed. Use this field to instruct the component to use
a specific template version, including configuration parameters and process. By controlling the version used, you
can roll-out template changes as required. The default value is Latest Version which means the component
will automatically use the newest version.

 | Using uDeploy | 46

Note: If you select a template that has a source configured for it, the dialog box will change to reflect
values defined for the template. Several fields, including the Source Config Type field, will become
populated and locked. If this is not what you want, select None.

6. Select a plug-in from the Status Plug-in field.

A status plug-in provides information relating to the component's process and inventory conditions, such process
success or failure. If you previously created any status-related plug-ins, they will be listed here. The default value
is Default, meaning that the component will use uDeploy-supplied utility-type steps. See Plug-in Integration on
page 98.

7. Specify whether the component will inherit clean-up settings by checking the Inherit Cleanup Settings check
box.

If checked, the component will use the values specified on the System Settings pane for the Days to Keep
Versions and Number of Versions to Keep fields. The default value is unchecked. See System Settings.

8. Enter the number of days to keep each component version in the Days to Keep Versions field.

To keep versions indefinitely, enter -1. If the Inherit Cleanup Settings check box is checked, the field is no
longer displayed. The default value is -1. See System Settings.

9. Enter the number of component versions to keep in the Number of Versions to Keep field.

To keep all versions, enter -1. If the Inherit Cleanup Settings check box is checked, the field is no longer
displayed. The default value is -1. See System Settings.

10. Select the source for the component artifacts from the Source Config Type drop-down list.

Selecting a value other than the default None, displays additional fields associated with your selection. Source-
dependent fields are used to identify and configure the component's artifacts. A component's artifacts can have
a single source. If you selected a template in the Template field that specified a source, this field is locked. See
Source Configuration Reference for a description of the supported types and associated fields.

11. If you want uDeploy to automatically import component versions, check the Import Versions Automatically
check box.

If checked, uDeploy will periodically poll the source location for new versions and import any it finds. The default
polling period is 15 seconds. You can change the value with the System Settings pane. If left unchecked, you can
manually create versions by using the Versions pane. By default, the box is unchecked.

12. If you want uDeploy to copy artifacts into CodeStation, leave the Copy to CodeStation box checked.

When checked, UrbanCode creates a tamper-proof copy of the component's artifacts and stores them in
CodeStation. If unchecked, only meta data about the artifacts will be imported. UrbanCode recommends that the
box be left checked.

13. Click the Save button to save the component.

Saved components are listed in the Component pane.

Component Processes

A component process is a series of user-defined steps that operate on a component's artifacts. Each component has
at least one process defined for it and can have several. Component processes are created with uDeploy's process
editor. The process editor is a visual drag-and-drop editor that enables you to drag process steps onto the workspace
and configure them as you go. Process steps are selected from a menu of standard steps. See Process Editor on page
48.

uDeploy provides steps for several utility processes such as inventory management and workflow control. Additional
process steps are provided by plug-ins. Out-of-the-box, uDeploy provides plug-ins for many common processes, such
as downloading and uploading artifacts, and retrieving environment information. See Plug-in Integration on page
98.

A frequently used process can be saved as a template and applied to other components. See Component Templates on
page 55.

 | Using uDeploy | 47

Configuring Component Processes

A component process is created in two steps: first, you configure basic information, such as name; second, you use
the process editor to assemble the process.

To configure a component process:

1. On the Navigation bar, click the Components tab.
2. On the Components pane, click the on the name of the component you want to use from among the listed

components.
3. On the Component: Name_of_selected_component pane, click the Processes tab.
4. Click the Create New Process button.

5. In the Create New Process dialog, enter a name in the Name field.

The name and description typically reflect the component's content and process type.
6. Optionally, enter a description in the Description field.

If the process will be used by several applications, you can specify that here.
7. Enter a location in the Default Working Directory field.

This is the location where the process steps will be executed. The default value enables the process to work in
different environments. For most processes the default value is fine, but if you want to deploy files to where they
are running, for example, you might want to change the value. If you change the default value, the process might
not work in every environment visited by the component.

 | Using uDeploy | 48

8. If you want users to supply a component version, check the Requires a Version check box.

When checked, users will to be prompted for a component version at run-time. If the process requires a specific
component version, check this box. By default, the box is unchecked.

9. If you want to restrict who can run the process, select a value from the Required Component Role drop-down
list.

The available options are derived from the uDeploy security system. The default value is None, meaning anyone
can run the process. For information about security roles, see Security on page 90.

10. Click the Save button to save your work.

Process Editor

After configuring a process with the Create New Process dialog, use the process editor to assemble the process.

To Display the Process Editor

1. On the Component: name pane, click the Processes tab.
2. Click on the name of the process you want to edit.

The Process Design pane is displayed.

 | Using uDeploy | 49

Figure 16: Process Design Pane

Available steps are listed in the Available Plug-in Steps list. uDeploy provides several utility steps and plug-ins
which are highlighted in the accompanying illustration. The illustration also shows several user-installed plug-ins.

Using the Process Editor

When the Process Design pane opens, the Design view is displayed. Processes are assembled with the Design view.
Several other views can be displayed by clicking the associated tab:

Edit Displays the Edit view where you can change process
parameters. See Component Processes on page 46.

Properties Displays the Properties view where you can create and
change process properties. See Process Properties on
page 53.

 | Using uDeploy | 50

Changelog Displays the Process Changelog view. This view
provides a record for every process change--property add
or delete, and process save or delete.

In outline, processes are assembled by dragging individual steps onto the workspace and configuring and connecting
them as they are placed. When a step is dragged onto the workspace, a pop-up is displayed that is used to configure
the step. Once configured and the pop-up closed, relationships between steps are formed by dragging connection
handles between associated steps.

Figure 17: Typical Process Step

Graphically, each step (except for the Start step which cannot be deleted or edited) is the same and provides:

edit tool displays the step configuration pop-up where you can
modify configuration parameters

delete tool removes the step from the workspace

resize handle enables you to resize the step graphic

connection tool used to create connections between steps

Note: If you delete a step, its connections (if any) are also deleted.

Adding Process Steps

To add a step:

1. In the Available Plug-in Steps list, click and hold down the mouse on the step you want to use, and drag it onto
the workspace.

The cursor changes to the step tool.

 | Using uDeploy | 51

Figure 18: Adding a Step
2. Release the step tool over the workspace.

The Edit Properties pop-up is displayed. Because connections are created after configuring the step's properties,
you can place the step anywhere on the workspace. Steps can be dragged and positioned at any time. See Plug-in
Integration on page 98 for information about configuring specific steps.

Figure 19: Typical Edit Properties Pop-up

Configuration dialogs are tailored to the selected step--only parameters associated with the step type are displayed.
3. After configuring the step's properties, save the step by clicking the Save button.

 | Using uDeploy | 52

The step is in the workspace and ready to be connected to other steps. If you change your mind, click the Cancel
button to remove the step from the workspace. You can add connections immediately after placing a step or place
several steps before defining connections.

Connecting Process Steps

Connections control process flow. The originating step will process before the target step. Creating a connection
between steps is a simple process: you drag a connection from the originating step to the target step. Connections are
formed one at a time between two steps, the originating step and the target step.

To create a connection:

1. Hover the cursor over the step that you want to use as the connection's origin.

The connection tool is displayed.

Figure 20: Connection Tool
2. Drag the connection tool over the target step.

The step beneath the connection tool is highlighted.

Figure 21: Dragging the Connection Over a Target Step
3. Release the connection tool over the target step to complete the connection.

 | Using uDeploy | 53

Figure 22: Completed Connection

Each connection has a connection delete tool, conditional flag, and might have others depending on the
originating step. See Switch Steps and Conditional Processes on page 54. Remove a connection by clicking on
the delete tool.

See Standard Component Process Steps on page 103 for information about configuring standard steps.

Process Properties

A processing property is a way to add user-supplied information to a process. A running process can prompt users for
information and then incorporate it into the process. Properties are defined with the Edit Property dialog.

To define a property:

1. On the Properties tab, click the Add Property button.

Figure 23: Edit Properties Dialog
2. In the Edit Properties dialog, enter a name in the Name field.
3. Optionally, enter a description in the Description field.
4. Enter a label in the Label field.

The label will be associated with the property in the user interface.
5. If the property is required, check the Required check box.

Default value is unchecked--not required.

 | Using uDeploy | 54

6. Specify the type of expected value with the Type drop-down list box.

Supported types are: text, text area, check box, select, multi select, and secure.
Default type is text.

7. In the Default Value field, enter a default value (if any).
8. To save your work, click the Save button. To discard changes, use the Cancel button.

To use a property in a process, reference it when you configure (see Component Processes on page 46) a step that
uses it.

Switch Steps and Conditional Processes

Every connection (except connections from the Start step) has a delete tool and conditional flag. The conditional flag
enables you to set a condition on a connection. The condition refers to the processing status of the originating step--
success or failure. Possible flag conditions are: success (the process completed successfully), fail (the process did
not finish successfully), or both (accept either status). By default, all connections have the flag set to checked (true),
meaning the originating step must successfully end processing before the target step starts processing.

To change a flag's value, cycle through possible values by clicking the flag.

Figure 24: Process with Switch Step

A switch step is a uDeploy-supplied utility step that enables process branching based on the value of a property set
on the step. Figure 24: Process with Switch Step on page 54 illustrates a switch step. In this case, the switch

 | Using uDeploy | 55

property is version.name. The connections from the switch step represent process branches dependent on the
value of version.name. In this example, regardless of which branch is taken, the process will proceed to the Run
WLDeploy step. Note that Run WLDeploy has success and fail conditions.

See Plug-in Integration on page 98 for information about configuring specific steps.

Note: If a step has multiple connections that eventually reach the same target step, determining whether the
target will execute depends on the value of the intervening flags. If all of the intervening connections have
success flags, the target will only process if all the steps are successful. If the intervening connections consist
of an assortment of success and fail flags, the target will process the first time one of these connections is
used.

For a process to succeed, execution must reach a Finish step. If it does not end with Finish, the process will fail every
time.

Component Templates

Component templates enable you save and reuse component processes and properties. Components based on
templates inherit the template's properties and process.

Creating Templates

To create a template:

1. On the Components pane, click the Templates tab.

2. Click the Create New Template button.

The Create New Component Template pop-up is displayed.

 | Using uDeploy | 56

3. Enter the template's name in the Name field.
4. Enter a description in the Description field.

The optional description can be used to convey additional information about the template.
5. Select a plug-in from the Status Plug-in field.

If you previously created any status-related plug-ins, they will be listed here. The default value is Default,
meaning that the template will have uDeploy-supplied steps available for use. See Plug-in Integration on page
98.

6. Select the source for the artifacts from the Source Config Type drop-down list.

Selecting a value other than the default None, displays additional fields associated with your selection. Source-
dependent fields are used to identify and configure the artifacts. If you select a source, components based on the
template will use the same source. See Source Configuration Reference for a description of the supported types
and associated fields.

Note: If you select a source, any properties you configure will be set for any components created with the
template.

7. Click the Save button to save the template.

Saved templates are listed in the Component Templates pane.

You create a process for the template in the same way processes are created for components. For information about
creating component processes, see Process Editor on page 48.

Using Templates

When you create a component based on a template, the component inherits the template's process (if any, see
Component Processes on page 46), and properties (if any, Creating Components on page 44).

To create a template-based component:

1. In the Component Templates pane, click the name of the template you want to use.
2. In the Component Template template name view, click the Create New Component button.

 | Using uDeploy | 57

Figure 25: Component Template template nameView

The Create New Component dialog box is displayed. This dialog is used to configure component properties.
Any properties defined in the template will be defined here. If a source was selected for the template, the source
is set here and the Source Config Type field is locked. For information about using this dialog, see Creating
Components on page 44

3. After configuring editable properties, save the component by clicking the Save button.

Templates used to create components are listed in the Templates view.

Components created from templates are listed in the Components view.

Resources
To run a deployment uDeploy requires an agent, or resource, on the target machine. Typically, at least one agent
is installed in every environment the application must pass through on its way to production. A typical production
pipeline may be SIT, UAT, PROD (the application must pass through two testing Environments and then can be
pushed to Production). In this scenario, at least three agents need to be installed: one per Environment.

 | Using uDeploy | 58

Note: When configuring resources for a production instance of uDeploy, you will need to take the
Environmental differences into consideration, which may require gathering some information in order to
fully roll out uDeploy. The Getting Started section includes some general guidelines for setting up and using
uDeploy. See Getting Started on page 22.

Figure 26: Resources Pane

To successfully deploy the application to the different environments, at least one agent needs to be installed in every
environment; however, many users will install multiple agents per environment: this is usually the case where the
different components run on different machines within a given Environment.

Figure 27: Resource Groups Pane

Whether you need one or multiple resources per environment is determined by your current infrastructure,
deployment procedures, and other requirements: Many UrbanDeploy users have differences among the different
Environments; e.g., in SIT they need only to deploy a Component to one machine; however, for UAT, they must

 | Using uDeploy | 59

deploy the Component to multiple machines. Under this scenario, you would configure Sub-groups for the single
agent in the SIT Environment and then set up individual Resources for each agent in the UAT Environment.

Figure 28: Sub-Groups

Resource Groups

uDeploy uses the concept of resource groups to help you organize and manage the agents installed in different
environment throughout the network. You need to create at least one resource group per installed agent, as when
configuring your Processes you will need to select the appropriate Group. What groups you create and how you
organize the groups, e.g., using subgroups, depends on your existing organizational processes and infrastructure.

Note: Before continuing, ensure that at least one agent has been installed in a target environment (for
evaluation purposes, the agent can be on the same machine as the server).

Creating a Resource Group

1. Go to Resources > Groups. and click on the folder icon.

 | Using uDeploy | 60

Figure 29: Action Tool
2. For the Type, most often Static is used.

Name and description. Typically, the name will correspond to either the Environment the Resource participates
in, the Component that uses the Resource Group, or a combination of both (e.g., SIT, DB, or SIT-DB). What
description you give depends on how you intend to use the Resource that this Group is assigned to, etc.

Figure 30: Create a Resource Group Dialog
3. Once the Resource has been created, select the pencil icon to edit the Group.

Figure 31: Add a Resource Dialog
4. Once you assign a Group to a Resource, you add Subresources. Subresources enable you to apply logical

identifiers, or categories, within any given Group. During deployment configuration, you can Select a given
Subresource that the Process will run on. To create a Subresource, select the New Resource icon for the Group.
Configuration is similar to Resource Group creation.

 | Using uDeploy | 61

Figure 32: Sub-resources

.

Setting Roles

Roles enable you to further refine how a Resource is utilized, and are similar to Subresources. For most Deployments,
you will not need to define a Role. During Process configuration, you select a specific role when determining the
resource. A role can be used to set up UrbanDeploy for rolling deployments, balancing, etc. For example, you can
set up your Process to only deploy to a percentage of targets first; add a manual task in the middle of the Process
that requires a user to execute (e.g., after they have tested the partial deployment); and then once the manual task has
completed the rest of the Process is assigned a second role responsible for deploying to the rest of the target machines.

Next Steps

With the Resources configured, it is now possible to configure a deployment. To get started, you will need to first set
up a Component Version, which corresponds to the artifacts you want to deploy. See Components on page 44..

Applications
Applications are responsible for bringing together all the components that need to be deployed together. This is done
by defining the different versions of each component as well as defining the different environments the components
must go through on the way to production. In addition, Applications also map the constituent hosts and machines
(called resources) a component needs within every environment.

Applications also implement automated deployments, rollbacks, etc. These are called Processes; however, at the
Application level Processes are only concerned with the Components and Resources necessary for deployment, etc. --
differentiating Application-processes from those of Components (which are concerned with running commands, etc.).

Applications also introduce Snapshots to manage the different versions of each Component. A Snapshot represents
the current state of an Application in the Environment. Typically, the Snapshot is generated in an Environment that
has no Approval gates -- called an uncontrolled Environment. For most users, the Snapshot is pushed through the
pipeline.

Note: Before configuring an Application, you will need to ensure that at least one agent has been installed
in a target environment (for evaluation purposes, the agent can be on the same machine as the server). In
addition, you will also need to add at least one Resource Group to the agent. See Resources on page 57.

Environments

An Environment is a collection of Resources that host the Application. Environments typically include host machines
and UrbanDeploy agents. When a deployment is run, it is always done so in an Environment. While Environments are
collections of Resources, Resources can vary per Environment.

For example, Environment 1 may have a single web server, a single middleware server, and a single database
server, that must be deployed to; UrbanDeploy represents these as three, separate Resources running in Environment
1. Environment 2, however, may have a cluster of Resources that the same Application must be deployed to.
UrbanDeploy compensates for these differences with Resource Groups (more at Resources by keeping an Inventory
of everything that is deployed to each Environment: UrbanDeploy knows exactly the Environment and Server(s)
where the Application was deployed to: and tracks the differences between the Environments.

 | Using uDeploy | 62

Processes

Processes play a coordination role. They are authored using a visual drag-n-drop editor, and composed of Steps that
call the Component Processes. For example, to deploy the Application you may invoke a Process called Deploy. This
Deploy Process would in turn call out to the requisite Components and execute the deployment.

Snapshots

Snapshots specify what combination of Component versions you deploy together. They are models you create before
deploying the Application. A Snapshot specifies the exact version for each Component in the Application. When
a Snapshot is created, UrbanDeploy gathers together information about the Application, including the Component
versions, for a given Environment. Typically, the Snapshot is generated in an Environment that has no Approval gates
-- called an uncontrolled Environment. For most users, the Snapshot is pushed through the pipeline. Typically, one of
the Environment will always remain uncontrolled to allow for Snapshots. When a successful deployment has been run
in the uncontrolled Environment, a Snapshot is created based on the Application's state within the Environment: thus
capturing the different versions of the Components at that time. As the Application moves through various testing
Environments, for example, UrbanDeploy ensures that the exact versions (bit for bit) are used in every Environment.
Once all the appropriate stages and Approvals for a Snapshot are complete, the Snapshot is pushed to Production.

Creating Applications

Before configuring an Application, you will need to ensure that at least one agent has been installed in a target
environment (for evaluation purposes, the agent can be on the same machine as the server). In addition, you will also
need to add at least one Resource Group to the agent. See Resources on page 57.

1. To get started go to Applications > Create New Application.

Name and Description. Typically the name and description correspond to the application you plan on deploying.

Notification Scheme. UrbanDeploy includes integrations with LDAP and e-mail servers that enable it to send
out notifications based on events. For example, the Default Notification scheme will send out an e-mail when an
Application Deployment fails or succeeds. Notifications also play a role in approving deployments: UrbanDeploy
can be configured to send out an e-mail to either a single individual or to a group or people (based on their
security role) notifying them that they need to approve a requested deployment. See Notifications on page 103.

2. Next, add at least one Component to the Application. If you have not already configured at least one Component,
you will not be able to set up an Application. Before continuing, see Components. In UrbanDeploy, Applications
are where you bring the different Components (including Versions and Processes) together so they can be
deployed as a single unit. For example, a typical web application may have three tiers (WEB, APP, DB), or
Components, required for the Application to run. It is at the Application level that these Components are brought
together.

Name and Description. Typically the name and description correspond to the application you plan on deploying.

 | Using uDeploy | 63

3. Configure Application Environments. If not already done so, install an agent, or agents, in your target
Environments (e.g., a machine in SIT, UAT, etc.). If no agents are available, you must install at lest one before
continuing (see Agent Installation for instructions). Before you can run a deployment, you must also define
at least one Environment for the Application and associate the Component with a machine (e.g., an agent on
the target machine) in the Environment. This initial Environment is typically "uncontrolled," meaning that no
Approvals are required to deploy to the Environment. This uncontrolled environment is where a Snapshot of the
Application will be taken, and it is this Snapshot which will be moved to the other, secured, Environments. Once
you set up the unsecured Environment, it may be a good idea to create an additional, secure Environment as well
(see also Create Controlled Application Environments and Approvals Process). This is done on the Environments
tab.

Name and Description. The name you give here will be used as part of the deployment process, and typically
corresponds to the target Environment. For example, if you are deploying to an integration environment, SIT
would be appropriate.

Require approvals. If you check the box, UrbanDeploy will enforce an approvals process before the deployment
can be successfully executed in the Environment you are setting up. Here, we are assuming you are configuring
the first deployment to an uncontrolled Environment, which is the most common approach. Once the deployment
has been successful, you can configure an approvals process as the application moves along the development
pipeline. If you are setting up more than one Environment, consider creating an Approvals Process for at least one
of them.

Color. The color enables you to create a visual identifier for each Environment. Typically, every Environment will
be assigned its own color.

 | Using uDeploy | 64

4. Map the Component to a Resource in the Environment. Once you have added the Environment to the Application,
UrbanDeploy needs to know where Component artifacts should be sent to. This is determined by selecting a
Resource Group that has already been set on the agent (or Resource). If not already done so, go to Resources >
Groups and set up at least one Resource Group. See Resources on page 57.

Deployments
uDeploy includes integrations with the most common tools used for web applications. To go beyond a basic
deployment, you can configure UrbanDeploy to run tool-specific commands on the target machine. For example, if
you are deploying the Application tire to a web server, your Deploy Process could be designed to do the following (all
integrations include similar steps):

1. Download Artifacts By Label.
2. Stop Application. Based on the configuration, this step will stop your application prior to deploying it.
3. Undeploy Application. This step is responsible for removing the application from the target machine. This can

help ensure a clean install when one is desired.
4. Deploy Application. Sends the exact Component Version to the target server and installs the artifacts in the

appropriate location.
5. Start Application. Once the artifacts have been transferred, UrbanDeploy will automatically restate the application

server.
6. Add Inventory Status.

 | Using uDeploy | 65

Figure 33: Deploy Application

Aside from the first and last steps of the Deploy Process, UrbanDeploy allows you to introduce as much automation
as is needed for a deployment. For a discussion on the individual integrations, and what each step does, please see the
individual integrations listed in the Plugins section.

Note: You can set up UrbanDeploy to use the exact same Component Deployment Process for every
Application Environment that the Component moves through on its way to Production. For more, see
Applications.

In addition to deploying content and interacting with the applications, a Deployment Process can also perform other
tasks, including running a SQL script as part of the process, for example when upgrading the database.

Execute SQL Script as Part of Database Update

UrbanDeploy includes an integration that enables you to run a database SQL script when you are deploying a
Database Component. You can either use the standard SQL step or, if you are using Oracle, you can use the tool-
specific step.

To configure a Deployment Process:

1. Go to the Components, select the Component and then select the Processes tab.
2. Create the Deploy Process.

Name the Process and give it an optional description. The name and description will typically reflect the contents
of the Component (e.g., database, application, etc.) as well as the process type (in this case Deploy or Install).

 | Using uDeploy | 66

If the Process, and the underlying Component, is to be used by numerous Applications, you can include that
information in the description.

Default working directory. This is the location that UrbanDeploy will use when executing the steps in the Deploy
Process. For most processes, accepting the default value is advisable. The default, which uses a property to
determine the directory, enables this process to work in different environments. If you change the default, and
add an absolute path, etc., you may not be able to use the same Process as the Component moves through the
production pipeline.

Requires a version. Check this box if you want the user to enter the version number when running the process. If
checked, the version will be passed to the process during runtime.

Required component role. This option enables you to restrict who can run this Component Process. The available
options are derived from the UrbanDeploy Security System. For example, if you select "Admin" from the drop-
down, only users that have been assigned that role in the Security System are able to run this Deployment Process.
This can help you enforce who can do what in UrbanDeploy.

3. Once you save the new Process, select it from the table. This will take you to the Process design tool. To set up
your process, grab the appropriate steps on the left and drag them onto the canvas.

4. Add the Download Artifacts By Label step. This step is responsible for fetching the artifacts from the
UrbanDeploy artifact repository (CodeStation) and should always be the very first step included in a Deployment
Process.

Name. You can either accept the default name or give a new name.

Repository URL. You must change this value. You will need to give the URL used to access UrbanDeploy. This
value was set during installation and is the one used to log into the server. When changing the URL, ensure that
the trailing /vfs is included: this specifies the location of CodeStation, where the Artifacts are being fetched from.
For example: http://urbandeploy.yourcompany.com:8080/vfs.

Repository ID. For most configurations, you should accept the default value, which is a property automatically set
by UrbanDeploy. This property tells the system where the Component is stored in the repository.

Label. The default property set here references the Label that was applied to the artifacts when the were uploaded
into CodeStation. It is advisable to accept the default value.

Directory offset. This is directory UrbanDeploy will use when executing the command. Using the default
value (signified by the period) means use the current directory. If you would like to change the directory, for
example if a script is looking for files in a specific directory, etc. When changing, the value you give is relative
to the working directory. giving "offset/directory" (without the quotes) will switch the working directory to the
"directory" folder within the "offset" folder.

Include and Exclude. You can tell UrbanDeploy to include or exclude any files stored in CodeStation when the
fetch-artifact step is run. The following wild cards are used in addition to specifying a specific file (enter each
statement on a new line):

• ** Indicates include every directory within the base directory.
• * Used to include every file. So, if you use *.zip, the files matching this pattern will be included.
• **/* Tells UrbanDeploy to retrieve the entire file tree underneath the base directory.

Allow failure. Check the box if you would like the step to continue even if a failure is detected.

Working Directory. If using the default directory, leave this blank. Other, you will need to specify an absolute
path (e.g., C:\path\to\working\directory).

Use Impersonation. If the step must run as a different user (as the one UrbanDeploy uses) give the credentials.
5. Add Inventory Status step. This step, which should always come at the end of any Deployment Process, is

responsible for updating the Inventory. This will allow UrbanDeploy to track where and when the artifacts have
been deployed. Without this step it will be difficult to tell if what is in a desired Application Environment is what
you actually intend to be there. Selecting the hard-coded Status of Active will ensure that the Component Deploy
Process is correctly identified.

6. Add additional automation to your deployment by inserting the appropriate steps BETWEEN the beginning and
ending steps. Please see the Plugin section for the specific steps, if any, you can include in your Component

 | Using uDeploy | 67

Deploy Process. By adding additional steps, in the order that they must be executed, you can build a fully
automated deployment.

Note: You have the option of configuring multiple Components (including versions an processes) before
assembling the application. Many users have found that configuring a single Component and then adding it
to the Application is the simplest process. This makes it easier to track down errors, etc., when testing the
Component Deployment Process. Once the initial component has been successfully deployed throughout
the application lifecycle, you can come back and configure the other components and then add them to the
application.

If you want to prove out your Deployment Process, you can now configure an Application that uses the Component
Deployment Process. Many users have found that configuring a single Component and then adding it to the
Application is the simplest process. This makes it easier to track down errors, etc., when testing the Component
Deployment Process. Once the initial component has been successfully deployed throughout the application lifecycle,
you can come back and configure the other components and then add them to the application. You can always come
back and set additional Components at a later time.

Next Steps

Resources. Once you have configured a Component, you will need to ensure that at least one agent has been installed
in the target environment and that the agent has been associated with a Resource Group. Go to Resources >
Groups. If you do not see anything under the "All Resource Groups" folder, you will need to add at least one
Resource Group before configuring an Application. See Resources to continue. If the agent has been associated with a
Resource Group, you can configure an Application.

Add additional automation. uDeploy integrates with numerous tools used for web applications. These integrations
enable you to add tool-specific automation steps to any Component Process. For example, the plugpin system has
built-in steps that enable UrbanDeploy to automatically stop, undeploy, deploy, and run servers such as Tomcat,
JBoss, and WebSphere. See Plug-in Integration on page 98

Reports
uDeploy provides deployment- and security-type reports:

• Deployment reports contain historical information about deployments. Data can be filtered in a variety of ways
and reports can be printed and saved. In addition, you can save search criteria for later use. See Deployment
Reports on page 68

• Security reports provide information about user roles and privileges. See Security Reports on page 77

For information about saving and printing reports, see Saving and Printing Reports on page 79

The following tables summarize the out-of-the-box reports.

Table 1: Deployment Reports

Report Description

Deployment Detail Provides information about deployments executed during a user-specified
reporting period. Each report row represents a deployment that executed
during the reporting period and matched the filter conditions.

See Deployment Detail on page 68.

Deployment Average Duration Average deployment times for applications executed during a user-specified
reporting period.

See Deployment Average Duration on page 73.

Deployment Total Duration Total deployment times for applications executed during a user-specified
reporting period.

 | Using uDeploy | 68

Report Description

See Deployment Total Duration on page 75

Deployment Count Provides information about the number of deployments executed during a
user-specified reporting period.

See Deployment Count on page 70

Table 2: Security Reports

Report Description

Application Security Provides information about user roles and privileges defined for uDeploy-
managed applications.

See Application Security on page 77

Component Security Information about user roles and privileges defined for components.

See Component Security on page 77

Environment Security Information about user roles and privileges defined for environments.

See Environment Security on page 78

Resource Security Information about user roles and privileges defined for resources.

See Resource Security on page 78

Deployment Reports

Deployment reports contain historical information about deployments, such as the total number executed and their
average duration. Data can be filtered in a variety of ways and reports can be printed and saved. In addition, you can
save search criteria for later use. See Saving and Printing Reports on page 79

Deployment Detail

The Deployment Detail Report provides information about deployments executed during a user-specified reporting
period. Each report row represents a deployment that executed during the reporting period and matched the filter
conditions.

Reports can be filtered in a variety of ways (discussed below), and columns selectively hidden. Reports can be saved
and printed. See Saving and Printing Reports on page 79.

When selected, the report runs automatically for the default reporting period--current month--and with all filters set to
Any. The default report represents all deployments that ran during the current month.

Deployment Detail Fields

Initially, all fields are displayed.

Field Description

Application Name of the application that executed the deployment.

Environment Target environment of the deployment.

Date Date and time when the deployment was executed.

User Name of the user who performed the deployment.

Status Final disposition of the deployment. Possible values are:

 | Using uDeploy | 69

Field Description

• Success

• Failure

• Running

• Scheduled

• Approval Rejected

• Awaiting Approval

Duration Amount of time the deployment ran. For a successful deployment, the
value represents the amount of time taken to complete successfully. If
deployment failed to start, no value is given. If a deployment started but
failed to complete, the value represents the amount of time it ran before it
failed or was cancelled.

Action This field provides links to additional information about the deployment.
The View Request link displays the Application Process Request pane.
See Applications on page 61.

Running the Deployment Detail Report

To run a report:

1. Use the Date Range date-picker to set the report's start- and end-dates.

Value Effect

Current, Prior Week Start day is either Sunday or Monday, depending on what is defined in
your system.

Current, Prior Month Start day is first day of the month.

Current, Prior Quarter Quarters are bound by calendar year.

Current, Prior Year Current year includes today's date.

Custom Displays the Custom pop-up which enables you to pick an arbitrary start-
and end-date.

The start-time is automatically set to 00:00 (24-hour clock) for the selected date in the reporting period.

The end-time is automatically set to 24:00 for the selected date.
2. Set the report filters.

Filters are set with the properties drop-down list boxes. To set a filter, select it from the corresponding property
list box.

Filter Effect

Application Only deployments executed by the selected application appear in the
report. Default value: Any.

Environment Only deployments executed by the application selected with the
Application list box that also used this environment appear in the report.
If the application value is Any, the available value is Any; otherwise,
environments defined for the selected application are listed.

User Only deployments executed by the selected user appear in the report.
Default value: Any.

 | Using uDeploy | 70

Filter Effect

Status Only deployments with the selected status appear in the report. Default
value: Any.

Plugin Only deployments that used the selected plug-in appear in the report.
Default value: Any. Note: the Any value also includes deployments that
did not use a plug-in.

3. Run the report.

Click the Run button to apply your filter conditions to the data and produce the report.

By default, the report is sorted by Application. You can sort the report on any field by clicking on the column
header.

For information about saving and printing reports, see Saving and Printing Reports on page 79.

Sample Reports

The following table contains examples of reports that can be produced using the Deployment Detail Report.

Desired Output Filter / Value

Show me:

All failed deployments that occurred
on July 4th during the previous year.

• Application: Any
• Status: Failure
• Date Range: Use the Custom pop-up to set the start- and end-dates to

July 4th.

.

Show me:

Deployments for an application that
used a specific environment.

• Application: Select the value from the drop-down list box.
• Environment: Select the environment from the drop-down list box.

When an application is selected, only environments defined for it are
available in the Environment drop-down list box.

.

Show me:

Failed deployments that used a
specific plug-in yesterday.

• Status: Failure
• Plugin : Select the value from the drop-down list box.
• Date Range: Use the Custom pop-up to set the start- and end-dates to

the previous day.

.

Show me:

My deployments that used a specific
application during the past month.

• Application: Select the value from the drop-down list box.
• User: Select your user ID.
• Date Range: Select Prior Month.

.

Deployment Count

The Deployment Count Report provides information about the number of deployments executed during a user-
specified reporting period. The report provides both a tabular presentation and line graph of the data. Each table row
represents an environment used by an applications for the reporting period and interval.

The line graph elements are:

• y-axis represents the number of deployments
• x-axis represents reporting intervals

 | Using uDeploy | 71

• plot lines represent environments used by applications

The units along the y-axis are scaled to the number of records reported. The units along the x-axis represent the
reporting interval, which can be: months, weeks, or days. Each color-coded plot line represents a single environment
used by the deployment during the reporting period.

When selected, the report runs automatically for the default reporting period (current month)and reporting interval
(days), and with all filters set to Any. The default report provides a count of all deployments that ran during the
current month.

Deployment Count Table Fields

Field Description

Application Name of the application that executed the deployment.

Environment Name of the environment used by the application.

Reporting Interval The remaining columns display the number of the deployments for the
selected reporting interval.

Running the Deployment Detail Report

To run a report:

1. Set the reporting period.

Use the Date Range date-picker to set the report's start- and end-dates. The selected value(s) determines the
columns in the tabular report, and the coordinate interval on the graph's x-axis. Default value: Current Month.

Value Effect

Current, Prior Week Start day is either Sunday or Monday, depending on what is defined in
your system. Reporting interval is set to days.

Current, Prior Month Start day is first day of the month. Reporting interval is set to days.

Current, Prior Quarter Quarters are bound by calendar year. Reporting interval is set to weeks.

Current, Prior Year Reporting interval is set months.

Custom Displays the Custom pop-up which enables you to pick an arbitrary start-
and end-date.

The start-time is automatically set to 00:00 (24-hour clock) for the selected date in the reporting period.

The end-time is automatically set to 24:00 for the selected date.
2. Set the report filters.

Filters are set with the properties drop-down list boxes. To set a filter, select it from the corresponding property
list box.

Filter Effect

Application Only deployments executed by the selected application(s) appear in the
report. .

To select applications:

1. Click the Application button.
2. To include an application in the report, click the corresponding check

box.

 | Using uDeploy | 72

Filter Effect

If a large number of applications are listed, type the first few letters
of the application's name in the text box to scroll the list. Multiple
applications can be selected.

3. Click OK.

Status Only deployments with the selected status appear in the report. Default
value: Success or Failure, which means all deployments.

Plugin Only deployments that used the selected plug-in appear in the report.
Default value: Any. Note: the Any value also includes deployments that
did not use a plug-in.

3. Run the report.

Click the Run button to apply your filter conditions to the data and produce the report.

A tabular report and line graph are produced.

Figure 34: Deployment Count Graph

Each environment used by a reporting application is represented by an individual plot line and table row. You can
hide a plot line by clicking the corresponding item in the graph legend. To see information about a graph coordinate,
hover the mouse over the graph point.

You can zoom a graph area by dragging the mouse over the area.

For information about saving and printing reports, see Saving and Printing Reports on page 79.

Sample Reports

The following table contains examples of reports that can be produced using the Deployment Count Report.

Desired Output Filter / Value

Show me:

The number of successful
deployments for two specific

• Application: Select both applications from the Applications dialog.
• Status: Success
• Plugin: Select the plug-in from the drop-down list box.
• Date Range: Use the Custom pop-up to set the ten-day range.

 | Using uDeploy | 73

Desired Output Filter / Value

applications during the past ten days
that used a particular plug-in.

.

Show me:

The number of failed deployments for
a given application during the past
month

• Application: Select the value from the Applications dialog.
• Status: Failure
• Date Range: Select Prior Month.

.

Show me:

The number of failed deployments
that used a specific plug-in
yesterday.

• Application: Select the applications from the Applications dialog.
• Status: Failure
• Plugin: Select the value from the drop-down list box.
• Date Range: Use the Custom pop-up to select the previous day.

.

Deployment Average Duration

The Deployment Average Duration Report provides average deployment times for applications executed during a
user-specified reporting period. The report provides both a tabular presentation and line graph of the data. Each table
row represents an environment used by an application for the reporting period and interval.

The line graph elements are:

• y-axis represents deployment duration average times
• x-axis represents reporting intervals
• plot lines represent environments used by the applications

The units along the y-axis are scaled to the number of records reported. The units along the x-axis represent the
reporting interval, which can be: months, weeks, or days. Each color-coded plot line represents a single environment
used by the deployment during the reporting period.

When selected, the report runs automatically for the default reporting period (current month)and reporting interval
(days), and with all filters set to Any. The default report provides average deployment times for all deployments that
ran during the current month.

Deployment Average Duration Fields

Field Description

Application Name of the application that executed the deployment.

Environment Name of the environment used by the application.

Reporting Interval The remaining columns display the average deployment times for the
reporting interval.

Running the Deployment Average Duration Report

To run a report:

1. Set the reporting period.

Use the Date Range date-picker to set the report's start- and end-dates. The selected value(s) determines the
columns in the tabular report, and the coordinate interval on the graph's x-axis. Default value: Current Month.

 | Using uDeploy | 74

Value Effect

Current, Prior Week Start day is either Sunday or Monday, depending on what is defined in
your system. Reporting interval is set to days.

Current, Prior Month Start day is first day of the month. Reporting interval is set to days.

Current, Prior Quarter Quarters are bound by calendar year. Reporting interval is set to weeks.

Current, Prior Year Reporting interval is set months.

Custom Displays the Custom pop-up which enables you to pick an arbitrary start-
and end-date.

The start-time is automatically set to 00:00 (24-hour clock) for the selected date in the reporting period.

The end-time is automatically set to 24:00 for the selected date.
2. Set the report filters.

Filters are set with the properties drop-down list boxes. To set a filter, select it from the corresponding property
list box.

Filter Effect

Application Only deployments executed by the selected application(s) appear in the
report.

To select applications:

1. Click the Application button.
2. To include an application in the report, click the corresponding check

box.

If a large number of applications are listed, type the first few letters
of the application's name in the text box to scroll the list. Multiple
applications can be selected.

3. Click OK.

Status Only deployments with the selected status appear in the report. Default
value: Success or Failure, which means all deployments.

Plugin Only deployments that used the selected plug-in appear in the report.
Default value: Any. Note: the Any value also includes deployments that
did not use a plug-in.

3. Run the report.

Click the Run button to apply your filter conditions to the data and produce the report.

A tabular report and line graph are produced. Each environment used by a reporting application is represented by an
individual plot line and table row. You can hide a plot line by clicking the corresponding item in the graph legend. To
see information about a graph coordinate, hover the mouse over the graph point.

You can zoom a graph area by dragging the mouse over the area.

For information about saving and printing reports, see Saving and Printing Reports on page 79.

Sample Reports

The following table contains examples of reports that can be produced using the Deployment Average Duration
Report.

 | Using uDeploy | 75

Desired Output Filter / Value

Show me:

Average durations for two specific
applications during the past ten days
that used a particular plug-in.

• Application: Select both applications from the Applications dialog.
• Status: Success or Failure
• Plugin: Select the plug-in from the drop-down list box.
• Date Range: Use the Custom pop-up to set the ten-day range.

.

Show me:

Average durations for successful
deployments for a given application
during the past six months.

• Application: Select the application from the Applications dialog.
• Status: Success
• Date Range: Use the Custom pop-up to set the range to the previous six

months.

.

Deployment Total Duration

The Deployment Total Duration Report provides total deployment times for applications executed during a user-
specified reporting period. The report provides both a tabular presentation and line graph of the data. Each table row
represents an environment used by one of the selected applications for the reporting period and interval.

The line graph elements are:

• y-axis represents deployment duration times
• x-axis represents reporting intervals
• plot lines represent environments used by the applications

The units along the y-axis are scaled to the number of records reported. The units along the x-axis represent the
reporting interval, which can be: months, weeks, or days. Each color-coded plot line represents a single environment
used by an application during the reporting period.

When selected, the report runs automatically for the default reporting period (current month)and reporting interval
(days), and with all filters set to Any. The default report provides total deployment times for all deployments that ran
during the current month.

Deployment Total Duration Fields

Field Description

Application Name of the application that executed the deployment.

Environment Name of the environment used by the application.

Reporting Interval The remaining columns display the total deployment times for the reporting
interval.

Running the Deployment Total Duration Report

To run a report:

1. Set the reporting period.

Use the Date Range date-picker to set the report's start- and end-dates. The selected value(s) determines the
columns in the tabular report, and the coordinate interval on the graph's x-axis. Default value: Current Month.

Value Effect

Current, Prior Week Start day is either Sunday or Monday, depending on what is defined in
your system. Reporting interval is set to days.

 | Using uDeploy | 76

Value Effect

Current, Prior Month Start day is first day of the month. Reporting interval is set to days.

Current, Prior Quarter Quarters are bound by calendar year. Reporting interval is set to weeks.

Current, Prior Year Reporting interval is set months.

Custom Displays the Custom pop-up which enables you to pick an arbitrary start-
and end-date.

The start-time is automatically set to 00:00 (24-hour clock) for the selected date in the reporting period.

The end-time is automatically set to 24:00 for the selected date.
2. Set the report filters.

Filters are set with the properties drop-down list boxes. To set a filter, select it from the corresponding property
list box.

Filter Effect

Application Only deployments executed by the selected application(s) appear in the
report.

To select applications:

1. Click the Application button.
2. To include an application in the report, click the corresponding check

box.

If a large number of applications are listed, type the first few letters
of the application's name in the text box to scroll the list. Multiple
applications can be selected.

3. Click OK.

Status Only deployments with the selected status appear in the report. Default
value: Success or Failure, which means all deployments.

Plugin Only deployments that used the selected plug-in appear in the report.
Default value: Any. Note: the Any value also includes deployments that
did not use a plug-in.

3. Run the report.

Click the Run button to apply your filter conditions to the data and produce the report.

A tabular report and line graph are produced. Each environment used by a reporting application is represented by an
individual plot line and table row. You can hide a plot line by clicking the corresponding item in the graph legend. To
see information about a graph coordinate, hover the mouse over the graph point.

You can zoom a graph area by dragging the mouse over the area.

For information about saving and printing reports, see Saving and Printing Reports on page 79.

Sample Reports

The following table contains examples of reports that can be produced using the Deployment Total Duration Report.

Desired Output Filter / Value

Show me: • Application: Select both applications from the Applications dialog.
• Status: Success or Failure
• Plugin: Select the plug-in from the drop-down list box.

 | Using uDeploy | 77

Desired Output Filter / Value

Total duration times for two specific
applications during the past ten days
that used a particular plug-in.

• Date Range: Use the Custom pop-up to set the ten-day range.

.

Show me:

Total duration times for successful
deployments for a given application
during the past six months.

• Application: Select the application from the Applications dialog.
• Status: Success
• Time Unit: Months
• Date Range: Use the Custom pop-up to set the six-month range.

.

Security Reports

Security reports provide information about user roles and privileges defined with the uDeploy security system.

Application Security

The Application Security Report provides information about user roles and privileges defined for uDeploy-managed
applications. Each report row represents an individual application. When selected, the report runs automatically for all
applications.

Application Security Fields

Field Description

Application Name of the application.

Run Component Processes Users who have component process execution privileges.

For information about component processes, see Creating Components on
page 44.

Execute Users who have application execution privileges.

For information about applications, see Applications on page 61.

Security Users who can define privileges for other users.

For information about security, see Security on page 90.

Read Users who can review information about the application but not change it.

Write Users who can access and edit the application.

The report is sorted by Application. You can change the sort order by clicking on the column header.

For information about saving and printing reports, see Saving and Printing Reports on page 79.

Component Security

The Component Security Report provides information about user roles and privileges defined for components. Each
report row represents an individual component. When selected, the report runs automatically for all components.

Component Security Fields

Fields are:

Field Description

Component Name of the component.

 | Using uDeploy | 78

Field Description

Execute Users who have component process execution privileges.

For information about component processes, see Creating Components on
page 44.

Security Users who can define privileges for other users.

For information about security, see Security on page 90.

Read Users who can review information about the component but not change it.

Write Users who can access and edit the component.

The report is sorted by Component. You can change the sort order by clicking on the column header.

For information about saving and printing reports, see Saving and Printing Reports on page 79.

Environment Security

The Environment Security Report provides information about user roles and privileges defined for environments.
Each report row represents an individual environment. When selected, the report runs automatically for all
environments.

Environment Security Fields

Field Description

Application Name of the application.

Environment Name of the environment.

Execute Users who have execution privileges for the environment.

For information about environments, see Applications on page 61.

Security Users who can define privileges for other users.

For information about security, see Security on page 90.

Read Users who can review information about the environment (but not change
it).

Write Users who can access and edit the environment.

The report can be sorted by by Application or Environment. By default, it is sorted by Application. You
can change the sort order by clicking on the column header.

For information about saving and printing reports, see Saving and Printing Reports on page 79.

Resource Security

The Resource Security Report provides information about user roles and privileges defined for resources. Each report
row represents an individual resource. When selected, the report runs automatically for all resources.

Resource Security Fields

Fields are:

Field Description

Resource Name of the resource.

 | Using uDeploy | 79

Field Description

Execute Users who have execution privileges for the resource.

For information about resources, see Resources on page 57.

Security Users who can define privileges for other users.

For information about security, see Security on page 90.

Read Users who can review information about the resource but not change it.

Write Users who can access and edit the resource.

The report is sorted by Resource. You can change the sort order by clicking on the column header.

For information about saving and printing reports, see Saving and Printing Reports on page 79.

Saving and Printing Reports

You can print and save report data for all report types. In addition, you can save filter and sort order information for
deployment-type reports.

Saving Report Data

uDeploy saves report data in CSV files (comma separated value).

To save report data:

1. Set the filters (if any) an run the report.
2. Click the CSV button.
3. Use the Opening File dialog.

You can save the data to file, or open the data with an application associated with CSV-type files on your system.

Note: Sort-order and hidden/visible column information is not preserved in the CSV file.

Saving Report Filters

You can save filter and sort-order settings for deployment reports. Saved reports can be retrieved with the My
Reports menu on the Reports pane.

To save a report:

1. Set the filter conditions.
2. Define the reporting period.
3. Run the report.
4. Optionally, set the sort order.

You can change the sort order for any column by clicking the column header.
5. Optionally, change column visibility.

Click the Edit button to display the Select Columns dialog. By default, all columns are selected to appear in a
report. To hide a column, click the corresponding check box.

6. Click the Save button.

The Save Current Filters dialog is displayed.
7. Enter a name for the file, and save your work.

To run your report, click the report name in the My Reports menu.

To delete your report, click the Delete button.

 | Using uDeploy | 80

Printing Reports

To print a report:

1. Set the filter conditions.
2. Define the reporting period.
3. Run the report.
4. Optionally, set the sort order.

Your changes are reflected in the printed report.
5. Optionally, change column visibility.

By default, all columns are selected to appear in the printed report. Hidden columns will not appear in the output.
6. Click the Print button to print your report.

Schedule Deployments
uDeploy has a built-in deployment scheduling system for setting regular deployments, or even black-out dates,
for your Deployments. Deployments for an individual Application are scheduled on a per-environment basis, set
when you run a deployment of a Snapshot or Deployment Process. Black-out dates are set within the individual
Environments.

Creating a Schedule

To set up a Scheduled Deployment, go to Application > Environment > Run Process. If you are scheduling a
Snapshot deployment, you would go to Application > Snapshots > Run Process instead. Regardless of the type of
deployment you are scheduling, configuration is the same.

After you check the Schedule Deployment box, uDeploy will prompt you to give the date and time you want the
deployment to run. The Make Recurring setting will deploy the Application on a regular schedule. For example, if
you are practicing Continuous Delivery, the Daily option will deploy the Application to the target Environment every
day.

Once you have scheduled the deployment, it will be added to the Calendar. There, if you click on the Scheduled
Deployment, you can edit, delete, or investigate the deployment.

Set Blackouts

Blackouts are set per-environment, per-application. Once set, no deployments (nor Snapshots) can be scheduled to
occur in that Environment. Any previously scheduled deployments to the Environment will fail if they fall within the
blackout date you set. To set up a blackout, go to Application > Environments > Calendar > Add Blackout. If you
need to set blackouts for more than one Environment, you must do this for each individual one. uDeploy will prompt
you to give the dates and times for the blackout.

Part

IV
Administration

Topics:

• Installation
• Security

 | Administration | 82

Installation
An installation of uDeploy consists of the uDeploy server (with a supporting database), and at least one agent.
Typically, the server, database, and agents are installed on separate machines. For a simple evaluation they can all be
installed on the same machine. In addition, Java must be installed on all agent and server machines.

Note: For evaluation purposes, the supplied Derby database should be adequate and can be installed on the
machine where the server is located. If you are installing uDeploy in a production environment, UrbanCode
recommends the use one of the supported databases--Oracle Database (all versions), SQL Server, or MySQL.

Installation Steps

1. Review the system requirements. See System Requirements on page 82.
2. Ensure that Java is installed on both the server and agent machines. Server and agent machines require Java JRE

5 or greater. Set the JAVA_HOME environment variable to point to the directory you intend to use. You can also
use the JDK.

3. Download both the uDeploy server and agent installation files. If you are installing an evaluation version, the
license is included with the downloaded files.

4. If you are not installing an evaluation version, install one of the supported databases. The database should be
installed before the server and on a separate machine. See Database Installation on page 84

5. Complete database installation by configuring the appropriate JDBC driver (typically supplied by the database
vendor).

6. Create an empty database for uDeploy and at least one dedicated user account.
7. Install the server. See Server Installation on page 86.
8. Finally, install at least one agent. See Agent Installation on page 88.

System Requirements

uDeploy will run on Windows and UNIX-based systems. While the minimum requirements provided below are
sufficient for an evaluation, you will want server-class machines for production deployments.

Server Minimum Installation Requirements

• Windows: Windows 2000 Server (SP4) or later.
• Processor: Single core, 1.5 GHz or better.
• Disk Space: 300 MB or more.
• Memory: 2 GB, with 256 MB available to uDeploy.
• Java version: JRE 5 or greater.

Recommended Server Installation

• Two server-class machines

UrbanCode recommends two machines for the server: a primary machine and a standby for fail-over. In addition,
the database should be hosted on a separate machine.

• Separate machine for the database
• Processor

2 CPUs, 2+ cores for each.
• RAM

8 GB
• Storage

Individual requirements depend on usage, retention policies, and application types. In general, the larger number
of artifacts kept in uDeploy's artifact repository (CodeStation), the more storage needed.

 | Administration | 83

Note: CodeStation is installed when the uDeploy server is installed.

For production environments, use the following guidelines to determine storage requirements:

• 10-20 GB of database storage should be sufficient for most environments.
• To calculate CodeStation storage requirements:

average build artifact size * number of builds per day * average number of
days before cleanup

For further assistance in determining storage requirements, contact UrbanCode support.
• Network

Gigabit (1000) Ethernet with low-latency to the database.

Agent Minimum Requirements

Designed to be minimally intrusive, agents require 64-256 MB of memory and 100 MB of disk space. Additional
requirements are determined by the processes the agent will run. For a simple evaluation, the agent can be installed
on the same physical machine as the server. In production environments, agents should be installed on separate
machines.

32- and 64-bit JVM Support

The uDeploy server must use the 32-bit JDK for the Windows 2003 64-bit server; the 64-bit JDK can be used for
agents. Because uDeploy does not require a multi-gigabyte heap, there is little advantage to using a 64-bit JVM. For
64-bit Windows installations, uDeploy uses a 32-bit JVM; for other 64-bit platforms, uDeploy uses a 64-bit JVM, as
the following table illustrates:

Operating
System

JVM 32-bit JVM 64-bit

Windows 32-bit yes NA

Windows 64-bit yes no

Non-Windows
32-bit

yes NA

Non-Windows
64-bit

yes yes

Performance Recommendations

Since the uDeploy agent performs most of the processing, optimal agent configuration is important. Except when
evaluating uDeploy, an agent should not be installed on the same machine where the server is located.

By following these recommendations, you should avoid most performance-related issues:

• Install the server as a dedicated user account. The server should be installed as a dedicated system account
whenever possible. However, uDeploy runs well as a root user (or local system user on Windows), and running
this way is the easiest method to avoid permission errors.

• Install the agent as dedicated system account. Ideally, the account used should be dedicated to uDeploy.
Because uDeploy agents are remote command-execution engines, it is best to create a user just for the agent and
grant it only the appropriate privileges.

• Do not install an agent on the uDeploy server machine. Because the agent is resource intensive, installing one
on the server machine will degrade server performance whenever a large deployment runs.

• Install one agent per machine. Several agents on the same machine can result in significant performance
reduction, especially when they are running at the same time.

 | Administration | 84

Download UrbanDeploy

The installation package is available from the UrbanCode support portal--Supportal. If you are evaluating uDeploy,
the Supportal account where you download uDeploy also enables you to create support tickets.

1. Navigate to the UrbanCode Support Portal support.urbancode.com/tasks/login/LoginTasks/
login.

If you do not have an account, please create one.

Note: You must have a license in order to downalod the product. For an evaluatin license, go to
urbancode.com/html/products/deploy/default.html.

2. Click the Products tab and select the uDeploy version you want to download.
3. Select the appropriate package for your environment for both the server and agent. The contents of the zip and tar

packages are the same.

uDeploy enables you to install agents on any supported platform, regardless of the operating system where the
server is installed.

4. Download the license. If you do not see a license, ensure that you are the Supportal account administrator.
Licenses are not available to all Supportal users.

Database Installation

Currently, uDeploy supports Derby, Oracle, SQL Server, and MySQL.

Installing Oracle

Before installing the uDeploy server, install an Oracle database. If you are evaluating uDeploy, you can install the
database on the same machine where the uDeploy server will be installed.

When you install uDeploy, you will need the Oracle connection information, and a user account with table creation
privileges.

uDeploy supports the following editions:

• Oracle Database Enterprise
• Oracle Database Standard
• Oracle Database Standard One
• Oracle Database Express

Version 10g or later is supported for each edition.

To install the database

1. Obtain the Oracle JDBC driver. The JDBC jar file is included among the Oracle installation files. The driver is
unique to the edition you are using.

2. Copy the JDBC jar file to uDeploy_installer_directory\lib\ext.
3. Begin server installation, see Server Installation on page 86. When you are prompted for the database type,

enter oracle.
4. Provide the JDBC driver class uDeploy will use to connect to the database.

The default value is oracle.jdbc.driver.OracleDriver.
5. Provide the JDBC connection string. The format depends on the JDBC driver.

Typically, it is similar to:

jdbc:oracle:thin:@[DB_URL]:[DB_PORT]

For example:

jdbc:oracle:thin:@localhost:1521.
6. Finish by entering the database user name and password.

 | Administration | 85

Installing MySQL

Before installing the uDeploy server, install MySQL. If you are evaluating uDeploy, you can install the database on
the same machine where the uDeploy server will be installed.

When you install uDeploy, you will need the MySQL connection information, and a user account with table creation
privileges.

To install the database

1. Create a database:

CREATE DATABASE urbandeploy;

GRANT ALL ON urbandeploy * TO 'urbandeploy'@'%'

IDENTIFIED BY 'password' WITH GRANT OPTION;

2. Obtain the MySQL JDBC driver. The JDBC jar file is included among the installation files. The driver is unique
to the edition you are using.

3. Copy the JDBC jar file to uDeploy_installer_directory\lib\ext.
4. Begin server installation, see Server Installation on page 86. When you are prompted for the database type,

enter mysql.
5. Provide the JDBC driver class uDeploy will use to connect to the database.

The default value is com.mysql.Driver.
6. Next, provide the JDBC connection string.

Typically, it is similar to:

jdbc:mysql[DB_URL]:[DB_PORT]:[DB_NAME]

For example:

jdbc:mysql://localhost:3306/urbandeploy.
7. Finish by entering the database user name and password.

Installing Microsoft SQL Server

Before installing the uDeploy server, install a SQL Server database. If you are evaluating uDeploy, you can install the
database on the same machine where the uDeploy server will be installed.

When you install uDeploy, you will need the SQL Server connection information, and a user account with table
creation privileges.

Before installing the uDeploy server, install an SQL Server database. If you are evaluating uDeploy, you can install
the database on the same machine where the uDeploy server will be installed:

CREATE DATABASE udeploy;

USE udeploy;

CREATE LOGIN udeploy WITH PASSWORD = 'password';

CREATE USER udeploy FOR LOGIN udeploy WITH DEFAULT_SCHEMA = udeploy;

CREATE SCHEMA udeploy AUTHORIZATION udeploy;

GRANT ALL TO udeploy;

1. Obtain the SQL Server JDBC driver. The JDBC jar file is included among the installation files.
2. Copy the JDBC jar file to uDeploy_installer_directory\lib\ext.
3. Begin server installation, see Server Installation on page 86. When you are prompted for the database type,

enter sqlserver.

 | Administration | 86

4. Provide the JDBC driver class uDeploy will use to connect to the database.

The default value is com.microsoft.sqlserver.jdbc.SQLServerDriver.
5. Next, provide the JDBC connection string. The format depends on the JDBC driver.

Typically, it is similar to:

jdbc:sqlserver://[DB_URL]:[DB_PORT];databaseName=[DB_NAME]

For example:

jdbc:sqlserver://localhost:1433;databaseName=udeploy.
6. Finish by entering the database user name and password.

Server Installation

The server provides services such as the user interface used to configure application deployments, the work flow
engine, the security service, and the artifact repository, among others

Note: If you are installing the server in a production environment, install and configure the database you
intend to use before installing the server. See Database Installation on page 84.

Windows Server Installation

1. Download and unpack the installation files to the installer_directory.
2. From the installer_directory, run install-server.bat.

Note: Depending on your Windows version, you might need to run the batch file as the administrator.

The uDeploy Installer is displayed and prompts you to provide the following information:
3. Enter the directory where the uDeploy Server will be installed.

Enter the directory where you want the server located. If the directory does not exist, enter Y to instruct the
Installer to create it for you. The default value is Y.

Note: Whenever the uDeploy Installer suggests a default value, you can press ENTER to accept the value.

4. Please enter the home directory of the JRE/JDK used to run the server.

If Java has been previously installed, uDeploy will suggest the Java location as the default value. To accept the
default value, press ENTER, otherwise override the default value and enter the correct path.

5. Enter the IP address on which the Web UI should listen. UrbanCode suggests accepting the default value all
available to this machine.

6. Do you want the Web UI to always use secure connections using SSL?

Default value is Y.

If you use SSL, turn it on for agents too, or the agents will not be able to connect to the server. This also applies
if using mutual authentication. If you change the port numbers for agent communication, you need to provide the
port numbers when installing the agents.

7. Enter the port where uDeploy should listen for secure HTTPS requests.

The default value is 8443.
8. Enter the port on which the uDeploy should redirect unsecured HTTP requests.

The default value is 8080.
9. Enter the URL for external access to the web UI.
10. Enter the port to use for agent communication.

The default value is 7918.
11. Do you want the Server and Agent communication to require mutual authentication?

 | Administration | 87

If you select Y, a manual key must be exchanged between the server and each agent. The default value is N.
12. Enter the database type UrbanDeploy should use.

The default value is the supplied database Derby. The other supported databases are: mysql, oracle, and
sqlserver.

If you enter a value other than derby, the uDeploy Installer will prompt you for connection information, which
was defined when you installed the database. See Database Installation on page 84.

13. Enter the database user name.. The default value is urbandeploy.

Enter the user name you created during database installation.
14. Enter the database password.. The default value is password.
15. Do you want to install the Server as Windows service?. The default value is N.

Note: When installed as a service, uDeploy only captures the value for the PATH variable. Values
captured during installation will always be used, even if you make changes later. For recent Windows
versions, you will need to execute the command as Administrator.

UNIX/LINUX Installation

1. Download and unpack the installation files to the installer_directory.

Note: If you are installing uDeploy on Solaris, UrbanCode recommends the Korn shell (ksh).

2. From the installer_directory run install-server.sh.

The uDeploy Installer is displayed and prompts you to provide the following information:
3. Enter the directory where the uDeploy Server will be installed.

If the directory does not exist, enter Y to instruct the Installer to create it for you. The default value is Y.

Note: Whenever the uDeploy Installer suggests a default value, you can press ENTER to accept the value.

4. Please enter the home directory of the JRE/JDK used to run the server.

If Java has been previously installed, uDeploy will suggest the Java location as the default value. To accept the
default value, press ENTER, otherwise override the default value and enter the correct path.

5. Enter the IP address on which the Web UI should listen. UrbanCode suggests accepting the default value all
available to this machine.

6. Do you want the Web UI to always use secure connections using SSL?

Default value is Y.

If you use SSL, turn it on for agents too, or the agents will not be able to connect to the server. This also applies
if using mutual authentication. If you change the port numbers for agent communication, you need to provide the
port numbers when installing the agents.

7. Enter the port where uDeploy should listen for secure HTTPS requests.

The default value is 8443.
8. Enter the port on which the uDeploy should redirect unsecured HTTP requests.

The default value is 8080.
9. Enter the URL for external access to the web UI.
10. Enter the port to use for agent communication.

The default value is 7918.
11. Do you want the Server and Agent communication to require mutual authentication?

If you select Y, a manual key must be exchanged between the server and each agent. The default value is N.
12. Enter the database type UrbanDeploy should use.

 | Administration | 88

The default value is the supplied database Derby. The other supported databases are: mysql, oracle, and
sqlserver.

If you enter a value other than derby, the uDeploy Installer will prompt you for connection information, which
was defined when you installed the database. See Database Installation on page 84.

13. Enter the database user name.. The default value is urbandeploy.

Enter the user name you created when you installed the database.
14. Enter the database password.. The default value is password.

Agent Installation

For production environments, UrbanCode recommends creating a user account dedicated to running the agent on the
machine where the agent is installed.

For simple evaluations, the administrative user can run the agent on the machine where the server is located. But
if you plan to run deployments on several machines, a separate agent should be installed on each machine. If,
for example, your testing environment consists of three machines, install an agent on each one. Follow the same
procedure for each environment the application uses.

Each agent needs the appropriate rights to communicate with the uDeploy server.

At a minimum, each agent should have permission to:

• Create a cache. By default, the cache is located in the home directory of the user running the agent. The cache
can be moved or disabled.

• Open a TCP connection. The agent uses a TCP connection to communicate with the server's JMS port.
• Open a HTTP(S) connection. The agent must be able to connect to the uDeploy user interface in order to

download artifacts from the CodeStation repository.
• Access the file system. Many agents need read/write permissions to items on the file system.

Installing an Agent

After downloading and expanding the installation package, open the installer_directory.

From the installer_directory run install-server.bat (Windows) or install-server.sh (UNIX-
LINUX).

Note: If you are installing Windows, you might need to run the batch file as the administrator.

The uDeploy Installer is displayed and prompts you to provide the following information:

1. Enter the directory where agent should be installed.. For example: C:\Program Files\urban-deploy\agent
(Windows) or /opt/urban-deploy/agent (UNIX).

If the directory does not exist, enter Y to instruct the Installer to create it for you. The default value is Y.

Note: Whenever the uDeploy Installer suggests a default value, you can press ENTER to accept the value.

2. Please enter the home directory of the JRE/JDK used to run the agent.

If Java has been previously installed, uDeploy will suggest the Java location as the default value. To accept the
default value, press ENTER, otherwise override the default value and enter the correct path.

3. Will the agent connect to a agent relay instead of directly to the server?

The default value is N.
4. Enter the host name or address of the server the agent will connect to. The default value is localhost.
5. Enter the agent communication port for the server.

The default value is 7918.

 | Administration | 89

6. Does the server agent communication use mutual authentication with SSL?.

Default value is Y.

If you use SSL, turn it on for server too or the agent will not be able to connect to the server. This also applies if
using mutual authentication. If you change the port numbers for agent communication, you need to provide them
when installing the agents.

7. Enter the name for this Agent. Enter a unique name; the name will be used by uDeploy to identify this agent.
8. Do you want to install the Agent as Windows service? (Windows only).

The default value is N. When installed as a service, uDeploy only captures the value for the PATH variable.
Values captured during installation will always be used, even if you make changes later. For recent Windows
versions, you will need to execute the command as Administrator.

Running uDeploy

Both UNIX-based and Windows installation require the uDeploy server and at lest one agent. Before you continuing,
ensure that you have the correct JVM/JDK for the server. If you are using a Oracle or MySQL database, make sure
you have installed and configured the appropriate driver, see Database Installation on page 84.

Running the Server

1. Navigate to the server_installation_directory\bin directory
2. Run the run_server.cmd batch file (Windows), or start_server.cmd (UNIX/LINUX).

Running an Agent
After the server has successfully started:

1. Navigate to the agent_installation_directory\bin directory
2. Run the run_udagent.cmd batch file (Windows), or start_udagent.cmd (UNIX/LINUX).
3. Once the installer is done, start the agent. Go to the UrbanDeploy agent directory created during installation. For

example, C:\Program Files\urban-deploy\agent. (Windows) or /opt/urban-deploy/agent (UNIX-like system). Enter
the bin directory. Run: run_udagent.cmd (WIndows) or "udagent run" (UNIX-like systems, without the quotes).

4. When the agent has finished starting up, go to the UrbanDeploy UI and select the Resources tab. You should see
the agent in the list. If the agent is not visible, ensure that you used the correct connection ports; if using SSL,
ensure it is turned on for both the server and the agent; that there is no firewall blocking communication; and that
the license is activated. If the agent still can't establish a connection to the server, please contact support.

5. To install another agent, repeat the previous steps. Note that you can use the same agent installer for both
Windows and UNIX-like systems.

Accessing uDeploy

1. Open a web browser and navigate to the external URL you entered during installation.
2. Log onto the server by using the default credentials.

User name: admin admin

Password: admin admin

You can change these later by using the Settings pane, see Database Installation on page 84
3. Activate license. A license is required for the agents to connect to the server. Without a license, UrbanDeploy

will be unable to run deployments, etc. If not already done so, go to Supportal and retrieve the license. Go to the
Setting tab and either upload or past the license to activate it.

4. To install an agent, see Agent Installation.

 | Administration | 90

Security
In uDeploy, you have detailed control over what users can see and do. The Security System maps to your
organizational structure by teams, activities, etc. For example, you can set up uDeploy so that team members only see
the Applications or Components they work with; or if a manager just needs to approve a deployment, etc., you can set
up uDeploy so all they see are the assigned Work Items.

uDeploy includes both an internal database to store Security information as well as an integration with LDAP. The
internal security database enables you to set up who can access a resource (Component, Application, Environment,
etc.) via the UI as well as who can approve a deployment or other Process. If you are rolling out a production instance
of uDeploy, it is recommended to use the LDAP integration.

Note: If you are evaluating uDeploy, it is not necessary to set up the LDAP integration: full security is
configured and enforced by the server. However, if you want to send out notifications you will need to set up
the LDAP integration.

When setting up Security in uDeploy, you can either use the default configurations or create your own Security
setting (unless you are configuring the LDAP integration, both options use the internal database for storage).

Figure 35: Security Pane

For both the LDAP integration and the standard security system, Security configuration is performed on the Settings
> Security page, and consists of the following:

• Authorization. Authorization Realms are used by Authentication Realms to associate Users with Roles and to
determine user access to uDeploy. There are two basic Authorization Realms in uDeploy: the default Realm and
the LDAP realm. When setting up Security, the first step is to configure Authorization.

• Authentication. The Authentication Realm is used to determine a users identity within an Authorization Realm.
The User authentication is determined following the hierarchy of realms displayed on the Authentication Realms.
When a User attempts to log in, uDeploy will poll all the configured Authentication Realms for matching
credentials.

• Schemas. The Security Schemas are visual representations of the different parts of uDeploy that may be secured.
Each Schema interacts with Users indirectly, through the Role. To configure security for any of the schemas,
you configure what are called Roles. In uDeploy, a Role is used to determine the type of permissions a user is
assigned (execute, read, security, write). For example, if a user is assigned the "admin" Role, and the "admin" role
has complete access to view, configure, and run Application Processes, that User will have access to that page. In
addition, the Role will also need to be assigned to additional schemas so the User can configure Applications, etc.

Typically, you will need to add new Roles to a schema on initial setup, and then occasionally as need dictates.
• Dynamic Roles. These give you a quick way to grant all users a specific set of permissions at once, regardless of

the User's assigned Group or Role, corresponding to the selected Schema. For example, creating a Dynamic Role
for Applications grants the selected permissions to every user in the system.

• UI security. Corresponding to the Roles created in the UI Security Schema, use this section to quickly assign
a user permissions to the different areas of uDeploy. For those with the Security permission (i.e., they see the
Security tab in the UI) you can easily add an individual user or a Group of users to any resource. In the example
below, an "admin" user is assigning new users, based on the Group they have been assigned, to an Application.

 | Administration | 91

Figure 36: Security Pane

Authentication

The LDAP integration enables you to map uDeploy Groups and Roles to your existing infrastructure. Once the
integration is configured, when a user logs into uDeploy using their LDAP credentials, the system will automatically
add them as a user.

You will need to first set up a dedicated Authorization Realm for LDAP. The LDAP Authorization Realm uses an
external LDAP server for authorization. If User Roles are defined in LDAP as an attribute of the User, the LDAP
Role Attribute configuration must be used. If User Roles are defined elsewhere in LDAP and reference the Users that
belong to them, a LDAP Role Search needs to be performed. Once you have the Authorization set up, configure the
Authentication Realm, which enables uDeploy to determine a User's identity as defined by LDAP.

Configuring LDAP Integration

1. Go to Settings > Security > Create New Authorization Realm

Figure 37: Create Authorization Realm
2. Now, provide uDeploy with information about your LDAP set up. You can either use the User Group Attribute,

Group Search Base, or a combination of settings to import. Once configured, and you set up the Authentication
Realm (covered in the next section) uDeploy will import your LDAP information.

 | Administration | 92

Figure 38: Authorization Realm Dialog

Name and description. The name you give here will be used when configuring the Authentication Real. M the
Authorization Realm.

Type. Select LDAP from the drop down.

User Group Attribute. Give the name of the attribute that contains role names in the user directory entry. If User
Groups are defined in LDAP as an attribute of the User, the Group Attribute configuration must be used.

Group Search Base. Give the base directory to execute Group searches in (e.g.,
ou=groups,dc=mydomain,dc=com). The will determine the Group that Urban Deploy will add any new users to.

Group Search Filter. Provide the LDAP filter expression to use when searching for user Group entries. The
user name will be put in place of {1} in the search pattern and the full user DN will be put in place of {0} (e.g.,
member={0}). The will determine the Group that Urban Deploy will add any new users to.

Group Name. Give the name of the entry that contains the user's Group names in the directory entries returned by
the Group Search. If left blank, no search will take place.

Search Group Subtree. Check the box to have uDeploy search the Group Subtree for the Users. Leave blank to
not search the Subtree.

3. Next, you need to configure an Authentication Realm. The Authentication Realm is used to determine a users
identity within an Authorization Realm, based on LDAP. The User authentication is determined following the
hierarchy of realms displayed on the Authentication Realms. When a Users attempts to log in, uDeploy will poll
all the configured Authentication Realms for matching credentials.

When configuring the LDAP Authentication Realm, you need to give uDeploy the location of your LDAP server,
as well as provide information similar that given for the Authentication Realm.

Name and description. The name you give here will be used when configuring the Authentication Real.

Authorization Realm. Select the Real created in the previous step.

Type. Select LDAP from the drop down.

Context Factory. Give the context factory class used to connect. This may vary depending upon your specific
Java implementation. The default for Sun Java implementations: com.sun.jndi.ldap.LdapCtxFactory

 | Administration | 93

LDAP URL. Provide the full URL to the LDAP server, beginning with ldap:// (e.g., ldap://
ldap.mydomain.com:389)

User DN Pattern. Give the user directory entry pattern. The user name will be put in place of {0} in the pattern
(e.g., cn={0},ou=employees,dc=yourcompany,dc=com).

User Search Base. Give the base directory to execute Group searches in (e.g.,
ou=enployees,dc=mydomain,dc=com).

User Search Filter. Provide the LDAP filter expression to use when searching for user entries (e.g., uid={0}).

Search User Subtree. Check the box to have uDeploy search the User Subtree for the entries. Leave blank to not
search the Subtree.

Search Connection DN. Give the directory name to use when binding to the LDAP for searches (e.g.,
cn=Manager,dc=mycompany,dc=com). If not specified, an anonymous connection will be made. Connection
Name is required if the LDAP server cannot be anonymously accessed.

Search Connection Password. Give the password uDeploy should use when connecting to LDAP to perform
searches.

Name Attribute. Give the attribute that contains the user's name, as set in LDAP.

Email Attribute. Give the attribute that contains the user's email address, as set in LDAP.

Once the configuration is complete, when a new user logs into uDeploy using their LDAP credentials, they will be
listed on the Authentication Realm User tab. Since uDeploy relies on LDAP for authentication, it is best practice
not to manage user passwords nor remove users from the list. If an active user is removed from uDeploy, they will
still be able to log onto the server as long as their LDAP credentials are valid. If this happens, you may also need
to set up UI and other permissions for the user.

4. Assign Group to Role. When a User has logged into uDeploy using LDAP credentials, uDeploy automatically
assigns the new User to a Group, based on the information pulled from LDAP. In the example below, when "New
LDAP User" logged on to uDeploy, they were automatically added to the LDAP Default group. If a user logs on
to uDeploy and they are part of a mapping that is not currently associated with a Group, uDeploy will create a new
Group based on the information fetched from LDAP. Conversely, if a user logs onto uDeploy and their LDAP
credentials map to an existing Group, they will be automatically added to that Group.

Figure 39: Edit Users

Once the new user has been successfully added to a Group, you may need to configure additional permissions.
This may happen when the new User is mapped to a Group that has limited permissions (e.g., the User has UI
permissions but not access to view any Components, Applications; the user was added to a Group that can only
access the Work Items and they need to be able to deploy an application, etc.). When this is the case, you will
need to set up security for the user, as outlined in the previous section.

 | Administration | 94

Figure 40: Group Dialog

Authorization

When setting up Security, there is no optimal process to follow; however using the following order presented below
can help you find your way. For most evaluations, starting out with the default Security settings should be adequate
and require minimal configuration. What is presented below assumes you are setting up a custom Security System
from scratch. In all likelihood.

Note: If you are using the LDAP integration set that up first before continuing. See Configure LDAP
Integration.

1. Go to Settings > Security > Create New Authorization Realm. You will select this Authorization Realm in the
next step. This Realm is used to ensure people attempting to log on to the server are allowed to.

2. Next, configure an Authentication Realm and add Users. The Authentication Realm is used to determine a users
identity within an Authorization Realm. The User authentication is determined following the hierarchy of realms
displayed on the Authentication Realms. When a Users attempts to log in, uDeploy will poll all the configured
Authentication Realms for matching credentials.

When adding a new user, the user name and password is what the individual will use when logging into uDeploy.
The user name will also be displayed when setting up additional Security. Unless you are using the LDAP
Integration, uDeploy, which does not have its own e-mail server, will not be able to send notifications to the e-
mail address.

3. Add new Group and assign a User (member) to the Group. A Group is a logical identifier for that similar Users
are identified with. It is at the Group level that individual Users are manually added to uDeploy. Once the Group
container is created, select it from the list and then manually enter the new User.

4. Next, create a new Role. The purpose of the Role is to assign permission that allows Users with that Role to use
uDeploy. For example, if you are setting up a new user that must access every page in uDeploy, you must add a
new Role to each Schema. Most users will only be required to add Roles on initial set up, and then occasionally
as needs arise. Since the Schemas work independently of each other, you will need to create a new Role for each,
defining the permissions that you want the role to have for the individual Schema.

 | Administration | 95

Figure 41: Role Pane
5. Finally, go to the specific Applications, Components, Environments, etc., and add either individual Users or the

Group they participate in. If you have many different individuals that must access a resource, say an Application,
the most efficient way to give them access is to add the Group that they are assigned to. If this is done, when
future users are added to uDeploy, you will not need to manually add them to the resources they need access to.

 | Administration | 96

Part

V
Reference

Topics:

• Plug-in Integration
• Notifications
• Configuration
• Inventory
• CLI Reference

 | Reference | 98

Plug-in Integration
uDeploy plugi-ns provide deployment capabilities with many of the common tools used for deployments, as well
as application servers, etc. Each integration has at least one "step," which can be thought of as a distinct piece of
automation. By stringing these individual steps together, you create a fully automated Process that replaces many
of your existing deployment scripts and manual deployment processes. For example, the integrations with Tomcat,
WebSphere, etc., are able to start and stop servers, install and uninstall applications, as well as perform other tool-
specific tasks.

Note: Before using one of the integrations, it is recommended that you understand what a Component
Process is and how a deployment is actually run in uDeploy. If not already done so, you can review the
Components section to see how a deployment is set up; then, the Applications section takes you through the
steps necessary to actually run a deployment.

The integration steps, which automate distinct deployment tasks, are added to a deploy Process at the Component
level (i.e., when setting up a Component Process). As you create a deployment, you start out with the basic
deployment configuration (the Download Artifacts By Label step first; the Add Inventory Status last) and then add the
integration steps between the steps. In the illustration, the process shows configuration for deploying an application.
The Process (a.) stops a running instance of the application; (b.) removes the application from the machine; (c.)
installs the new version of the application; and (d.) restarts the application to finish the deployment.

 | Reference | 99

Your deploy jobs will vary, depending on your existing processes. Most users can will end up with a process similar
to the one in the illustration, regardless of the integration they use. Because there is no way to predict how your
processes are set up, you may need to mix and match steps from each scenario.

uDeploy also includes a number of tools for automating other processes that don't fit neatly into the integration steps,
or when it is impossible to completely replace an existing script. For example, your deployment may require running
a Ant task, a Groovy script, or even execute SQL statements.

Plug-in Integrations at Runtime

Because the integrations drive other tools, you will need to ensure that, when you run a deployment, uDeploy is
actually able to execute the steps you configured.

Typically this will require you to install agents (Resources) on particular machines in the target Environments. Unless
otherwise stated, the following guidelines applies to all the integrations:

1. The agents (Resources) selected to run an integration step must be installed on the same physical machine as
the Application. For example, if your deploy jobs includes the step "Stop WebSphere Application," the agent
(Resource) must be on the target server to run the command.

2. The Resources running the step must be installed as a user with appropriate permissions to both execute
commands as well as access the tool. This typically entails granting permissions on the machine if the external
tool is installed as a different user; installing the agent as a service; or, in some cases, installing the agent as
ROOT (which should be avoided is possible).

3. The required minimum version of the external tool must be used. If stated, some of integrations require a
minimum version of a third-party tool (e.g., WebSphere 5.1 or above). While it may be possible to use the
integrations with older versions of the third-party tool, UrbanCode can't guarantee that it will work.

If you need to install new agents of modify Resources, or need to gather more information before using one of the
integrations, the Resources and Getting Started section may be helpful.

Ant Plug-in

The Ant integration consists of a single step that you can include in any deployment process or other process. The
most common use case is running Ant Tasks on the target machine. If the step is used within a larger process, ensure
that you set the order correctly. For example, if you have to run an Ant script prior to executing another process, you
will need to add the Ant step above the other step.

Groovy Plug-in

The Groovy integration consists of a single step that you can include in any deployment process or other process. The
most common use case is running a Groovy script on the target machine. If the step is used within a larger process,
ensure that you set the order correctly. For example, if you have to run Groovy prior to executing another process,
you will need to add the Groovy step above the other step.

IIS_AppCmd Plug-in

Use the integration to add IIS to your deploy processes and run deployments using MSDeploy. The integration
enables uDeploy to run a MSDeploy command; start, stop and recycle applications in IIS; as well delete and
synchronize IIS objects.

Please note that you will need to select the appropriate Resource: i.e., ensure that you use the agent installed on
the same machine as the application/configuration you are syncing. You will also need to provide the path to the
msdeploy.exe.

 | Reference | 100

JBOSS Plug-in

Use the integration to add JBoss to your deploy processes. The integration enables uDeploy to run commands to start,
stop, deploy and undeploy an application on JBoss. To start using the integration, you will need to configure a deploy
process that uses the JBoss steps. How you configure your deploy job will depend on your existing JBoss processes.
Generally, you will need to order the job steps to:

1. Stop the application
2. Undeploy the application
3. Deploy the application
4. Start the application

Before setting up the integration, ensure the Resource has access to the deploy directory the JBoss manages.

SQL/JDBC Plug-in

The SQL-JDBCl integration consists of a single step that you can include in any deployment process or other process.
The most common use case opening and running a SQL statement when updating a database. If the step is used within
a larger process, ensure that you set the order correctly. For example, if you have to run a SQL statement prior to
executing another process, you will need to add the step above the other step.

SQLPLUS Plug-in

The Oracle SQL-Plus integration consists of a single step that you can include in any deployment process or other
process. The most common use case opening and running a SQL statement when updating a database. If the step is
used within a larger process, ensure that you set the order correctly. For example, if you have to run a SQL statement
prior to executing another process, you will need to add the step above the other step.

 | Reference | 101

Tomcat Plug-in

Use the integration to add Tomcat to your deployment processes. The integration enables uDeploy to run commands
to start, stop, deploy and undeploy an application on Tomcat. To start using the integration, you will need to configure
a deploy process that uses the Tomcat steps. How you configure your deploy process will depend on your existing
Tomcat processes. Generally, you will need to order the job steps to:

1. Stop the application
2. Undeploy the application
3. Deploy the application
4. Start the application

When running the process, ensure that the Resource running the step has access to the Tomcat fill client jar, that
uDeploy has a user and password to log to connect with, and that the full path to the Tomcat full client jar is available.

WebSphere Plug-in

Use the integration to run commands that start and stop your WebSphere server and applications; install a new
application; update an application; as well as execute a wsadmin script. To start using the integration, in your
WebSphere properties files you need to add the user name and password uDeploy will use when connecting. Once
this is done, you can then set up your WebSphere deploy jobs. How you configure your deploy job will depend on
your existing WebSphere processes. Generally, you will need to order the job steps to:

1. Resolve artifacts
2. Stop the application/sever
3. Update/uninstall the application
4. Start the application/server

 | Reference | 102

When setting up your deployment, you select one of the pre-defined steps and add it to your process. Step
configuration is straightforward: you generally need to give connection information as well as the location to any
executables.

WLDeploy Plug-in

Use the integration to add WLDeploy to your deployment processes. The integration enables uDeploy to run
commands to start, stop, deploy and undeploy an application on Tomcat. To start using the integration, you will need
to configure a deploy process that uses the Tomcat steps. How you configure your deploy process will depend on
your existing Tomcat processes. Generally, you will need to order the job steps to:

1. Stop the application
2. Undeploy the application
3. Deploy the application
4. Start the application

When running the process, ensure that the Resource running the step has access to the Tomcat fill client jar, that
uDeploy has a user and password to log to connect with, and that the full path to the Tomcat full client jar is available.

 | Reference | 103

Standard Component Process Steps

uDeploy also includes a standard set of automation steps that can be used to add additional automation to any process.
These will typically be used for advanced processes or where there is no standard integration step available from one
of the integrations.

Shell

The Shell integration consists of a single step that you can include in any deployment process or other process. The
most common use case opening and running a shell script on the target machine. If the step is used within a larger
process, ensure that you set the order correctly. For example, if you have to run a shell script prior to executing
another process, you will need to add the Shell step above the other step.

UrbanCode Package Manager

This is for advanced usage. The steps work in conjunction with uDeploy to create and manage application packages
for deployments. These steps will not generally be used as part of a regular deployment.

uDeploy

These advanced automation steps will retrieve properties and environments from uDeploy.

Notifications
uDeploy can send notifications to users based on a number of events that occur. Most commonly, uDeploy is
configured to send an e-mail regarding the state of a deployment (success or failure) or when an Approval is required.
The recipient list of these notifications must be tied to the LDAP integration, etc., (see Security for more), allowing
you an easy way to integrate uDeploy with your existing infrastructure. If you have not already done so, set up
uDeploy with LDAP prior to configuring Notifications: uDeploy relies on LDAP, and the associated e-mail server, to
send notifications. When setting up notifications, you select both the events and the Role, which is inherited from the
Security System, to determine which users will be notified and when. For example, it is common for an administrator
or environment owner to be notified when a Work Item (as part of the Approvals Process) has been generated. The
Default Notification Scheme, which sends out notifications to the Application and Admin default Roles (see Security
for more), can edited or you can create your own Notification Scheme.

Note: Once a Notification Scheme is created, it will be used when setting up your Applications (see here for
an example).

To set up your own notifications, go to Settings > Notifications > Create New Notification Scheme page.

Figure 42: Notification Schemes

 | Reference | 104

Configure the new Scheme. Here, you will be setting up the who/when for notifications. Once configured, you can
come back add additional Entries to the Scheme or edit existing one.

Notification Type. The process type is determined mainly by the type of recipient. For example, a deployment
engineer would be interested in being notified about a failed deployment.

Figure 43: Notification Type

Notification Target. When setting the target, the application option will only send out notifications when the event
selected above corresponds to an Application. For example, the "Process Success" event, when pared with the
"Application" Target would trigger a notification when a Process (an application deployment) is successful. Similarly,
the same event type, when used with the "Environment" target would instigate a notification when a successful
deployment has been run in an Environment (e.g., SIT, PROD).

Figure 44: Notification Target

Notification Role. The Role corresponds to those set in the Security System. Any individual assigned the Role you
select will receive an e-mail.

Figure 45: Notification Role

 | Reference | 105

Template Name. The available templates are provided by default and should suffice for all your needs; they format
the e-mail being sent. Which template you use is based on why you want to set up a notification and the recipients of
the notification.

Figure 46: Template

Application deployment failure / success. Sends out notifications about a specific Application deployment to the
specified users, based on the Role setting above.

Task readied / created / completed. This template is used to report back on the state of manual tasks.

Deployment readied. A specialized e-mail template for letting people know a deployment has been prepared.

Once you have the Entry done, add other Entries to the Scheme following the same process. Note that if you want to
use the new Notification Scheme with existing Applications, you will need to modify the Application settings.

Configuration
The Urban Deploy Configuration tool enables you to manipulate configuration data, such as Tomcat or JBoss
property files.

Configuration data is manipulated at the application, component, and environment levels:

• Component

A component refers to any file that you want to include in the build process; components are associated with the
configuration data required to deploy them.

• Application

Applications represent a group of components deployed together by component version and environment.
Applications also map the hosts and machines (called resources) components require within every environment.

• Environment

An environment is a collection of resources that host an Urban Deploy application.

 | Reference | 106

Figure 47: Configuration Tab

Access the Configuration Tool by clicking on the Configuration tab.

Application Configuration
You attach properties to an application by using the Configuration Tool's Application: Add Property button.

Typical application-level properties include items that are the same in all environments, such as base-install paths.

 | Reference | 107

Figure 48: Application Properties panel

Access the Configuration Tool Application panel by clicking on an application in the Application/Component/
Environment list box.

Adding Application Configuration Properties

To add a property to the selected application:

1. Use the Add Property button.

The Edit Property pop-up is displayed.

 | Reference | 108

Figure 49: Edit Property pop-up
2. Enter the property's name in the Name field.

While component fields can be of any size, configuration properties are restricted to 4,000 characters.
3. Enter a description of the property in the Description field.
4. Specify whether the property is secure by using the Secure check box.

Secure properties are stored encrypted and displayed obscured in uDeploy's user interface.
5. Enter a value for the property in the Value field.
6. Save the property by using the Save button.
7. To discard your work, use the Cancel button.

Modifying Application Configuration Properties

To modify a previously created property, use the Edit link in the Action column to display the Edit Property pop-up.

Deleting Application Configuration Properties

To delete a property, use the Delete link in the Action column.

Component Configuration
The Urban Deploy Configuration tab enables you to configure applications and their components from a single
location.

Configuration data is manipulated at the application, component, and environment levels:

• component

A component refers to any file that you want to include in the build process; components are associated with the
configuration data required to deploy them.

• application

Applications represent a group of components deployed together by component version and environment.
Applications also map the hosts and machines (called resources) components require within every environment.

• environment

An environment is a collection of resources that host an Urban Deploy application.

 | Reference | 109

Figure 50: Configuration Tab

Access the Configuration Tool by clicking on the Configuration tab.

Environment Configuration
The Urban Deploy Configuration tab enables you to configure applications and their components from a single
location.

Configuration data is manipulated at the application, component, and environment levels:

• component

A component refers to any file that you want to include in the build process; components are associated with the
configuration data required to deploy them.

• application

Applications represent a group of components deployed together by component version and environment.
Applications also map the hosts and machines (called resources) components require within every environment.

• environment

An environment is a collection of resources that host an Urban Deploy application.

 | Reference | 110

Figure 51: Environment Configuration Tab

Access the Configuration Tool by clicking on the Configuration tab.

Inventory
The Inventory shows what Applications and Components have been deployed, including the current Versions that
are running on the Resource within an Environment. The inventory provides complete visibility into the different
Versions of your Applications which can be tracked back to the original artifacts imported into UrbanDeploy. There
different views of the current inventory, depending on where in UrbanDeploy you are. Inventory information is
available on the individual Components, for every Application Environment, as well as for each Resource (agent).

Resources Inventory

If you want to see what Components are sitting on the SIT Environment, go to Resources and select the agent
that is running in the Environment. From here, selecting either the Component or its Version will take you to the
Component's page if you need more information.

 | Reference | 111

Figure 52: Resource inventory

Component Inventory

Unlike the Resource Inventory, the Component Inventory tells you what Version of the Component is running on a
Resource. For example, if the Component is currently deployed to multiple machines, they would all be displayed.
For here, you can go navigate to the Resource.

 | Reference | 112

Figure 53: Component inventory

Environment Inventory

For any given Application Environment, the Inventory tells you both what version of any given Component is
running on a particular Resource. If multiple Versions are running on different Resources, they will all be listed.

Figure 54: Environment Inventory

 | Reference | 113

CLI Reference

addActionToRoleForApplications

Add action to a role for applications.

Format

 udclient [global-args...] [global-flags...]
 addActionToRoleForApplications [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

addActionToRoleForComponents

Add action to a role for components

Format

 udclient [global-args...] [global-flags...]
 addActionToRoleForComponents [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

addActionToRoleForEnvironments

Add action to a role for environments

Format

 udclient [global-args...] [global-flags...]
 addActionToRoleForEnvironments [args...]

 | Reference | 114

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

addActionToRoleForResources

Add action to a role for resources

Format

 udclient [global-args...] [global-flags...]
 addActionToRoleForResources [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

addActionToRoleForUI

Add action to a role for the UI

Format

 udclient [global-args...] [global-flags...] addActionToRoleForUI
 [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

addComponentToApplication

Add a component to an Application.

 | Reference | 115

Format

 udclient [global-args...] [global-flags...] addComponentToApplication
 [args...]

Options

 -component, --component
 Required. Name of the component to add

 -application, --application
 Required. Name of the application to add it to.

addGroupToRoleForApplication

Add a group to a role for an application

Format

 udclient [global-args...] [global-flags...]
 addGroupToRoleForApplication [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

addGroupToRoleForComponent

Add a group to a role for a component

Format

 udclient [global-args...] [global-flags...] addGroupToRoleForComponent
 [args...]

Options

 -group, --group

 | Reference | 116

 Required. Name of the group

 -role, --role
 Required. Name of the role

 -component, --component
 Required. Name of the component

addGroupToRoleForEnvironment

Add a group to a role for an environment

Format

 udclient [global-args...] [global-flags...]
 addGroupToRoleForEnvironment [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

 -environment, --environment
 Required. Name of the environment

addGroupToRoleForResource

Add a group to a role for a resource

Format

 udclient [global-args...] [global-flags...] addGroupToRoleForResource
 [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -resource, --resource
 Required. Name of the resource

 | Reference | 117

addGroupToRoleForUI

Add a group to a role for the UI

Format

 udclient [global-args...] [global-flags...] addGroupToRoleForUI
 [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

addLicense

Add a license to the server.

Format

 udclient [global-args...] [global-flags...] addLicense [args...]

Options

 No options for this command.

addNameConditionToGroup

Add a name condition to a resource group. Only works with dynamic groups.

Format

 udclient [global-args...] [global-flags...] addNameConditionToGroup
 [args...]

Options

 -comparison, --comparison
 Required. Type of the comparison

 | Reference | 118

 -value, --value
 Required. Value of the comparison

 -group, --group
 Required. Path of the parent resource group

addPropertyConditionToGroup

Add a property condition to a resource group. Only works with dynamic groups.

Format

 udclient [global-args...] [global-flags...]
 addPropertyConditionToGroup [args...]

Options

 -property, --property
 Required. Name of the property

 -comparison, --comparison
 Required. Type of the comparison

 -value, --value
 Required. Value of the comparison

 -group, --group
 Required. Path of the parent resource group

addResourceToGroup

Add a resource to a resource group. Only works with static groups.

Format

 udclient [global-args...] [global-flags...] addResourceToGroup
 [args...]

Options

 -resource, --resource
 Required. Name of the resource to add

 -group, --group
 Required. Path of the resource group to add to

 | Reference | 119

addRoleToResource

Add a role to a resource.

Format

 udclient [global-args...] [global-flags...] addRoleToResource
 [args...]

Options

 -resource, --resource
 Required. Name of the parent resource.

 -role, --role
 Required. Name of the new resource.

addRoleToResourceWithProperties

Add a role to a resource. This command takes a JSON request body. Use the -t flag to view the template for the data
required for this command.

Format

 udclient [global-args...] [global-flags...]
 addRoleToResourceWithProperties [args...] [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

Options

 No options for this command.

addUserToGroup

Add a user to a group

Format

 udclient [global-args...] [global-flags...] addUserToGroup [args...]

 | Reference | 120

Options

 -user, --user
 Required. Name of the user

 -group, --group
 Required. Name of the group

addUserToRoleForApplication

Add a user to a role for an application

Format

 udclient [global-args...] [global-flags...]
 addUserToRoleForApplication [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

addUserToRoleForComponent

Add a user to a role for a component

Format

 udclient [global-args...] [global-flags...] addUserToRoleForComponent
 [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -component, --component
 Required. Name of the component

 | Reference | 121

addUserToRoleForEnvironment

Add a user to a role for an environment

Format

 udclient [global-args...] [global-flags...]
 addUserToRoleForEnvironment [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

 -environment, --environment
 Required. Name of the environment

addUserToRoleForResource

Add a user to a role for a resource

Format

 udclient [global-args...] [global-flags...] addUserToRoleForResource
 [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -resource, --resource
 Required. Name of the resource

addUserToRoleForUI

Add a user to a role for the UI

 | Reference | 122

Format

 udclient [global-args...] [global-flags...] addUserToRoleForUI
 [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

addVersionFiles

Upload files to a version

Format

 udclient [global-args...] [global-flags...] addVersionFiles [args...]

Options

 -component, --component
 Optional. Name/ID of the component (Only required if not using
 version ID)

 -version, --version
 Required. Name/ID of the version

 -base, --base
 Required. Local base directory for upload. All files inside this
 will be sent.

 -offset, --offset
 Optional. Target path offset (the directory in the version files
 to
 which these files should be added)

addVersionStatus

Add a status to a version

Format

 udclient [global-args...] [global-flags...] addVersionStatus [args...]

 | Reference | 123

Options

 -component, --component
 Optional. Name/ID of the component (Only required if not using
 version ID)

 -version, --version
 Required. Name/ID of the version

 -status, --status
 Required. Name of the status to apply

createApplication

Create a new application. This command takes a JSON request body. Use the -t flag to view the template for the data
required for this command.

Format

 udclient [global-args...] [global-flags...] createApplication
 [args...] [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

Options

 No options for this command.

createApplicationProcess

Create a new application process. This command takes a JSON request body. Use the -t flag to view the template for
the data required for this command.

Format

 udclient [global-args...] [global-flags...] createApplicationProcess
 [args...] [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

 | Reference | 124

Options

 No options for this command.

createComponent

Create a new component. This command takes a JSON request body. Use the -t flag to view the template for the data
required for this command.

Format

 udclient [global-args...] [global-flags...] createComponent [args...]
 [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

Options

 No options for this command.

createComponentProcess

Create a new component process. This command takes a JSON request body. Use the -t flag to view the template for
the data required for this command.

Format

 udclient [global-args...] [global-flags...] createComponentProcess
 [args...] [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

Options

 No options for this command.

 | Reference | 125

createDynamicResourceGroup

Create a new static resource group.

Format

 udclient [global-args...] [global-flags...] createDynamicResourceGroup
 [args...]

Options

 -path, --path
 Required. Path to add the resource group to (parent resource
 group
 path).

 -name, --name
 Required. Name of the new resource group.

createEnvironment

Create a new environment.

Format

 udclient [global-args...] [global-flags...] createEnvironment
 [args...]

Options

 -application, --application
 Required. Application to add the environment to.

 -name, --name
 Required. Name of the new environment.

 -description, --description
 Optional. Description of the new environment.

 -color, --color
 Optional. Color of the new environment.

 -requireApprovals, --requireApprovals
 Optional. Does the environment require approvals?

 | Reference | 126

createGroup

Add a new group

Format

 udclient [global-args...] [global-flags...] createGroup [args...]

Options

 -group, --group
 Required. Name of the group

createMapping

Create a new mapping.

Format

 udclient [global-args...] [global-flags...] createMapping [args...]

Options

 -environment, --environment
 Required. The environment for the mapping.

 -component, --component
 Required. The component for the mapping.

 -resourceGroupPath, --resourceGroupPath
 Required. The resource group for the mapping.

 -application, --application
 Optional. The application for the mapping. Only necesary if
 specifying env name instead of id.

createResourceGroup

Create a new static resource group.

Format

 udclient [global-args...] [global-flags...] createResourceGroup
 [args...]

 | Reference | 127

Options

 -path, --path
 Required. Path to add the resource group to (parent resource
 group
 path).

 -name, --name
 Required. Name of the new resource group.

createRoleForApplications

Create a role for applications

Format

 udclient [global-args...] [global-flags...] createRoleForApplications
 [args...]

Options

 -role, --role
 Required. Name of the role

createRoleForComponents

Create a role for components

Format

 udclient [global-args...] [global-flags...] createRoleForComponents
 [args...]

Options

 -role, --role
 Required. Name of the role

createRoleForEnvironments

Create a role for environments

Format

 | Reference | 128

 udclient [global-args...] [global-flags...] createRoleForEnvironments
 [args...]

Options

 -role, --role
 Required. Name of the role

createRoleForResources

Create a role for resources

Format

 udclient [global-args...] [global-flags...] createRoleForResources
 [args...]

Options

 -role, --role
 Required. Name of the role

createRoleForUI

Create a role for the UI

Format

 udclient [global-args...] [global-flags...] createRoleForUI [args...]

Options

 -role, --role
 Required. Name of the role

createSubresource

Create a new subresource.

Format

 udclient [global-args...] [global-flags...] createSubresource
 [args...]

 | Reference | 129

Options

 -parent, --parent
 Required. Name of the parent resource.

 -name, --name
 Required. Name of the new resource.

 -description, --description
 Optional. Description of the resource.

createUser

Add a new user This command takes a JSON request body. Use the -t flag to view the template for the data required
for this command.

Format

 udclient [global-args...] [global-flags...] createUser [args...] [-]
 [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

Options

 No options for this command.

createVersion

Create a new version for a component

Format

 udclient [global-args...] [global-flags...] createVersion [args...]

Options

 -component, --component
 Required. Name/ID of the component

 | Reference | 130

 -name, --name
 Required. Name of the new version

deleteGroup

Delete a group

Format

 udclient [global-args...] [global-flags...] deleteGroup [args...]

Options

 -group, --group
 Required. Name of the group

deleteResourceGroup

null

Format

 udclient [global-args...] [global-flags...] deleteResourceGroup
 [args...]

Options

 -group, --group
 Required. Path of the resource group to delete

deleteResourceProperty

Remove a custom property from a resource

Format

 udclient [global-args...] [global-flags...] deleteResourceProperty
 [args...]

Options

 -resource, --resource
 Required. Name of the resource to configure

 | Reference | 131

 -name, --name
 Required. Name of the property

deleteUser

Delete a user

Format

 udclient [global-args...] [global-flags...] deleteUser [args...]

Options

 -user, --user
 Required. Name of the user

exportGroup

Add a new group

Format

 udclient [global-args...] [global-flags...] exportGroup [args...]

Options

 -group, --group
 Required. Name of the group

getApplication

Get a JSON representation of an application

Format

 udclient [global-args...] [global-flags...] getApplication [args...]

Options

 -application, --application
 Required. Name of the application to look up

 | Reference | 132

getApplicationProcess

Get a JSON representation of an Application Process

Format

 udclient [global-args...] [global-flags...] getApplicationProcess
 [args...]

Options

 -application, --application
 Required. Name of the application

 -applicationProcess, --applicationProcess
 Required. Name of the process

getApplicationProcessRequestStatus

Repeat an application process request.

Format

 udclient [global-args...] [global-flags...]
 getApplicationProcessRequestStatus [args...]

Options

 -request, --request
 Required. ID of the application process request to view

getApplications

Get a JSONArray representation of all applications

Format

 udclient [global-args...] [global-flags...] getApplications [args...]

Options

 No options for this command.

 | Reference | 133

getComponent

Get a JSON representation of a component

Format

 udclient [global-args...] [global-flags...] getComponent [args...]

Options

 -component, --component
 Required. Name of the component to look up

getComponentProcess

Get a JSON representation of a componentProcess

Format

 udclient [global-args...] [global-flags...] getComponentProcess
 [args...]

Options

 -component, --component
 Required. Name of the component

 -componentProcess, --componentProcess
 Required. Name of the component

getComponents

Get a JSONArray representation of all components

Format

 udclient [global-args...] [global-flags...] getComponents [args...]

Options

 No options for this command.

 | Reference | 134

getComponentsInApplication

Get all components in an application

Format

 udclient [global-args...] [global-flags...] getComponentsInApplication
 [args...]

Options

 -application, --application
 Required. Name of the application to get components for

getEnvironment

Get a JSON representation of an environment

Format

 udclient [global-args...] [global-flags...] getEnvironment [args...]

Options

 -environment, --environment
 Required. Name of the environment to look up

getEnvironmentsInApplication

Get all environments in an application

Format

 udclient [global-args...] [global-flags...]
 getEnvironmentsInApplication [args...]

Options

 -application, --application
 Required. Name of the application to get environments for

 | Reference | 135

getMapping

Get a JSON representation of a mapping

Format

 udclient [global-args...] [global-flags...] getMapping [args...]

Options

 -mapping, --mapping
 Required. ID of the mapping to look up

getResource

Get a JSON representation of a resource

Format

 udclient [global-args...] [global-flags...] getResource [args...]

Options

 -resource, --resource
 Required. Name of the resource to look up

getResourceGroup

Get a JSON representation of a resource group

Format

 udclient [global-args...] [global-flags...] getResourceGroup [args...]

Options

 -group, --group
 Required. Path of the resource group to show

getResourceGroups

Get a JSONArray representation of all resource groups

 | Reference | 136

Format

 udclient [global-args...] [global-flags...] getResourceGroups
 [args...]

Options

 No options for this command.

getResourceProperty

Get the value of a custom property on a resource

Format

 udclient [global-args...] [global-flags...] getResourceProperty
 [args...]

Options

 -resource, --resource
 Required. Name of the resource

 -name, --name
 Required. Name of the property

getResources

Get a JSONArray representation of all resources

Format

 udclient [global-args...] [global-flags...] getResources [args...]

Options

 No options for this command.

getResourcesInGroup

Get a JSONArray representation of all resources in a group

 | Reference | 137

Format

 udclient [global-args...] [global-flags...] getResourcesInGroup
 [args...]

Options

 -group, --group
 Required. Path of the resource group

getRoleForApplications

Get a JSON representation of a role

Format

 udclient [global-args...] [global-flags...] getRoleForApplications
 [args...]

Options

 -role, --role
 Required. Name of the role

getRoleForComponents

Get a JSON representation of a role

Format

 udclient [global-args...] [global-flags...] getRoleForComponents
 [args...]

Options

 -role, --role
 Required. Name of the role

getRoleForEnvironments

Get a JSON representation of a role

 | Reference | 138

Format

 udclient [global-args...] [global-flags...] getRoleForEnvironments
 [args...]

Options

 -role, --role
 Required. Name of the role

getRoleForResources

Get a JSON representation of a role

Format

 udclient [global-args...] [global-flags...] getRoleForResources
 [args...]

Options

 -role, --role
 Required. Name of the role

getRoleForUI

Get a JSON representation of a role

Format

 udclient [global-args...] [global-flags...] getRoleForUI [args...]

Options

 -role, --role
 Required. Name of the role

getUser

Get a JSON representation of a user

 | Reference | 139

Format

 udclient [global-args...] [global-flags...] getUser [args...]

Options

 -user, --user
 Required. Name of the user

importGroup

Add a new group This command takes a JSON request body. Use the -t flag to view the template for the data required
for this command.

Format

 udclient [global-args...] [global-flags...] importGroup [args...] [-]
 [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

Options

 No options for this command.

importVersions

Run the source config integration for a component This command takes a JSON request body. Use the -t flag to view
the template for the data required for this command.

Format

 udclient [global-args...] [global-flags...] importVersions [args...]
 [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

 | Reference | 140

Options

 No options for this command.

login

Login for further requests

Format

 udclient [global-args...] [global-flags...] login [args...]

Options

 No options for this command.

logout

Logout

Format

 udclient [global-args...] [global-flags...] logout [args...]

Options

 No options for this command.

removeActionFromRoleForApplications

Add action to a role for applications

Format

 udclient [global-args...] [global-flags...]
 removeActionFromRoleForApplications [args...]

Options

 -role, --role
 Required. Name of the role

 | Reference | 141

 -action, --action
 Required. Name of the action

removeActionFromRoleForComponents

Add action to a role for components

Format

 udclient [global-args...] [global-flags...]
 removeActionFromRoleForComponents [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

removeActionFromRoleForEnvironments

Add action to a role for environments

Format

 udclient [global-args...] [global-flags...]
 removeActionFromRoleForEnvironments [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

removeActionFromRoleForResources

Add action to a role for resources

Format

 udclient [global-args...] [global-flags...]
 removeActionFromRoleForResources [args...]

 | Reference | 142

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

removeActionFromRoleForUI

Add action to a role for the UI

Format

 udclient [global-args...] [global-flags...] removeActionFromRoleForUI
 [args...]

Options

 -role, --role
 Required. Name of the role

 -action, --action
 Required. Name of the action

removeGroupFromRoleForApplication

Remove a group to a role for an application

Format

 udclient [global-args...] [global-flags...]
 removeGroupFromRoleForApplication [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

 | Reference | 143

removeGroupFromRoleForComponent

Remove a group to a role for a component

Format

 udclient [global-args...] [global-flags...]
 removeGroupFromRoleForComponent [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -component, --component
 Required. Name of the component

removeGroupFromRoleForEnvironment

Remove a group to a role for an environment

Format

 udclient [global-args...] [global-flags...]
 removeGroupFromRoleForEnvironment [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

 -environment, --environment
 Required. Name of the environment

removeGroupFromRoleForResource

Remove a group to a role for a resource

 | Reference | 144

Format

 udclient [global-args...] [global-flags...]
 removeGroupFromRoleForResource [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

 -resource, --resource
 Required. Name of the resource

removeGroupFromRoleForUI

Remove a group to a role for the UI

Format

 udclient [global-args...] [global-flags...] removeGroupFromRoleForUI
 [args...]

Options

 -group, --group
 Required. Name of the group

 -role, --role
 Required. Name of the role

removeResourceFromGroup

Remove a resource from a resource group. Only works with static groups.

Format

 udclient [global-args...] [global-flags...] removeResourceFromGroup
 [args...]

Options

 -resource, --resource

 | Reference | 145

 Required. Name of the resource to remove

 -group, --group
 Required. Path of the resource group to remove from

removeRoleForApplications

Create a role for applications

Format

 udclient [global-args...] [global-flags...] removeRoleForApplications
 [args...]

Options

 -role, --role
 Required. Name of the role

removeRoleForComponents

Create a role for components

Format

 udclient [global-args...] [global-flags...] removeRoleForComponents
 [args...]

Options

 -role, --role
 Required. Name of the role

removeRoleForEnvironments

Create a role for environments

Format

 udclient [global-args...] [global-flags...] removeRoleForEnvironments
 [args...]

Options

 | Reference | 146

 -role, --role
 Required. Name of the role

removeRoleForResources

Create a role for resources

Format

 udclient [global-args...] [global-flags...] removeRoleForResources
 [args...]

Options

 -role, --role
 Required. Name of the role

removeRoleForUI

Create a role for the UI

Format

 udclient [global-args...] [global-flags...] removeRoleForUI [args...]

Options

 -role, --role
 Required. Name of the role

removeRoleFromResource

Remove a role from a resource.

Format

 udclient [global-args...] [global-flags...] removeRoleFromResource
 [args...]

Options

 -resource, --resource

 | Reference | 147

 Required. Name of the parent resource.

 -role, --role
 Required. Name of the new resource.

removeUserFromGroup

Remove a user from a group

Format

 udclient [global-args...] [global-flags...] removeUserFromGroup
 [args...]

Options

 -user, --user
 Required. Name of the user

 -group, --group
 Required. Name of the group

removeUserFromRoleForApplication

Remove a user to a role for an application

Format

 udclient [global-args...] [global-flags...]
 removeUserFromRoleForApplication [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

removeUserFromRoleForComponent

Remove a user to a role for a component

 | Reference | 148

Format

 udclient [global-args...] [global-flags...]
 removeUserFromRoleForComponent [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -component, --component
 Required. Name of the component

removeUserFromRoleForEnvironment

Remove a user to a role for an environment

Format

 udclient [global-args...] [global-flags...]
 removeUserFromRoleForEnvironment [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -application, --application
 Required. Name of the application

 -environment, --environment
 Required. Name of the environment

removeUserFromRoleForResource

Remove a user to a role for a resource

Format

 udclient [global-args...] [global-flags...]
 removeUserFromRoleForResource [args...]

 | Reference | 149

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

 -resource, --resource
 Required. Name of the resource

removeUserFromRoleForUI

Remove a user to a role for the UI

Format

 udclient [global-args...] [global-flags...] removeUserFromRoleForUI
 [args...]

Options

 -user, --user
 Required. Name of the user

 -role, --role
 Required. Name of the role

repeatApplicationProcessRequest

Repeat an application process request.

Format

 udclient [global-args...] [global-flags...]
 repeatApplicationProcessRequest [args...]

Options

 -request, --request
 Required. ID of the application process request to repeat

 | Reference | 150

requestApplicationProcess

Submit an application process request to run immediately. This command takes a JSON request body. Use the -t flag
to view the template for the data required for this command.

Format

 udclient [global-args...] [global-flags...] requestApplicationProcess
 [args...] [-] [filename]

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

Options

 No options for this command.

setComponentEnvironmentProperty

Set property on component/environment mapping

Format

 udclient [global-args...] [global-flags...]
 setComponentEnvironmentProperty [args...]

Options

 -propName, --propName
 Required. Name of the property to set

 -propValue, --propValue
 Required. Value of the property to set

 -component, --component
 Required. Name of the component to look up

 -environment, --environment
 Required. Name or id of the environment to look up

 -application, --application
 Optional. Name of the application to look up

 | Reference | 151

setComponentProperty

Set property on component

Format

 udclient [global-args...] [global-flags...] setComponentProperty
 [args...]

Options

 -propName, --propName
 Required. Name of the property to set

 -propValue, --propValue
 Required. Value of the property to set

 -component, --component
 Required. Name of the component to look up

setResourceProperty

Set a custom property on a resource

Format

 udclient [global-args...] [global-flags...] setResourceProperty
 [args...]

Options

 -resource, --resource
 Required. Name of the resource to configure

 -name, --name
 Required. Name of the property

 -value, --value
 Optional. New value for the property

updateUser

Add a new user This command takes a JSON request body. Use the -t flag to view the template for the data required
for this command.

Format

 udclient [global-args...] [global-flags...] updateUser [args...] [-]
 [filename]

 | Reference | 152

 -
 Read JSON input from the stdin. See command for requirements.

 filename
 Read JSON input from a file with the given filename. See command
 for
 requirements.

Options

 -user, --user
 Required. Name of the user

	Contents
	Introduction
	Overview
	Components
	Applications
	Agents
	Resources

	Hands-On
	Getting Started
	Creating Components
	hello_world Component Version
	Hello World Component Process
	hello_world Component Process Design
	Hello World Application

	Using uDeploy
	Components
	Creating Components
	Component Processes
	Process Editor
	Component Templates

	Resources
	Resource Groups

	Applications
	Creating Applications

	Deployments
	Reports
	Deployment Reports
	Deployment Detail
	Deployment Count
	Deployment Average Duration
	Deployment Total Duration

	Security Reports
	Application Security
	Component Security
	Environment Security
	Resource Security

	Saving and Printing Reports

	Schedule Deployments

	Administration
	Installation
	System Requirements
	Download UrbanDeploy
	Database Installation
	Server Installation
	Agent Installation
	Running uDeploy

	Security
	Authentication
	Authorization

	Reference
	Plug-in Integration
	Ant Plug-in
	Groovy Plug-in
	IIS_AppCmd Plug-in
	JBOSS Plug-in
	SQL/JDBC Plug-in
	SQLPLUS Plug-in
	Tomcat Plug-in
	WebSphere Plug-in
	WLDeploy Plug-in
	Standard Component Process Steps

	Notifications
	Configuration
	Application Configuration
	Component Configuration
	Environment Configuration

	Inventory
	CLI Reference
	addActionToRoleForApplications
	addActionToRoleForComponents
	addActionToRoleForEnvironments
	addActionToRoleForResources
	addActionToRoleForUI
	addComponentToApplication
	addGroupToRoleForApplication
	addGroupToRoleForComponent
	addGroupToRoleForEnvironment
	addGroupToRoleForResource
	addGroupToRoleForUI
	addLicense
	addNameConditionToGroup
	addPropertyConditionToGroup
	addResourceToGroup
	addRoleToResource
	addRoleToResourceWithProperties
	addUserToGroup
	addUserToRoleForApplication
	addUserToRoleForComponent
	addUserToRoleForEnvironment
	addUserToRoleForResource
	addUserToRoleForUI
	addVersionFiles
	addVersionStatus
	createApplication
	createApplicationProcess
	createComponent
	createComponentProcess
	createDynamicResourceGroup
	createEnvironment
	createGroup
	createMapping
	createResourceGroup
	createRoleForApplications
	createRoleForComponents
	createRoleForEnvironments
	createRoleForResources
	createRoleForUI
	createSubresource
	createUser
	createVersion
	deleteGroup
	deleteResourceGroup
	deleteResourceProperty
	deleteUser
	exportGroup
	getApplication
	getApplicationProcess
	getApplicationProcessRequestStatus
	getApplications
	getComponent
	getComponentProcess
	getComponents
	getComponentsInApplication
	getEnvironment
	getEnvironmentsInApplication
	getMapping
	getResource
	getResourceGroup
	getResourceGroups
	getResourceProperty
	getResources
	getResourcesInGroup
	getRoleForApplications
	getRoleForComponents
	getRoleForEnvironments
	getRoleForResources
	getRoleForUI
	getUser
	importGroup
	importVersions
	login
	logout
	removeActionFromRoleForApplications
	removeActionFromRoleForComponents
	removeActionFromRoleForEnvironments
	removeActionFromRoleForResources
	removeActionFromRoleForUI
	removeGroupFromRoleForApplication
	removeGroupFromRoleForComponent
	removeGroupFromRoleForEnvironment
	removeGroupFromRoleForResource
	removeGroupFromRoleForUI
	removeResourceFromGroup
	removeRoleForApplications
	removeRoleForComponents
	removeRoleForEnvironments
	removeRoleForResources
	removeRoleForUI
	removeRoleFromResource
	removeUserFromGroup
	removeUserFromRoleForApplication
	removeUserFromRoleForComponent
	removeUserFromRoleForEnvironment
	removeUserFromRoleForResource
	removeUserFromRoleForUI
	repeatApplicationProcessRequest
	requestApplicationProcess
	setComponentEnvironmentProperty
	setComponentProperty
	setResourceProperty
	updateUser

